Error Estimates in the Maximum Norm for the Solution of Poisson’s Equation Approximated by the Five-Point Laplacian Using the Discrete Maximum Principle

Ganesh Bahadur Basnet, Madhav Poudel, Resham Prasad Paudel
{"title":"Error Estimates in the Maximum Norm for the Solution of Poisson’s Equation Approximated by the Five-Point Laplacian Using the Discrete Maximum Principle","authors":"Ganesh Bahadur Basnet, Madhav Poudel, Resham Prasad Paudel","doi":"10.3126/jnms.v6i2.63020","DOIUrl":null,"url":null,"abstract":"In this paper, we study error estimates in the maximum norm in the context of solving Poisson’s equation numerically when approximated the Five-Point Laplacian method using the discrete maximum principle. The primary objective is to assess the accuracy of this numerical approach in solving Poisson’s equation and to provide insights into the behavior of error estimates. We focus on the estimates of maximum norm of the discrete functions defined on a grid in a unit square as well as in a square of side s, and estimate errors measured in the maximum norm.","PeriodicalId":401623,"journal":{"name":"Journal of Nepal Mathematical Society","volume":"66 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nepal Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3126/jnms.v6i2.63020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study error estimates in the maximum norm in the context of solving Poisson’s equation numerically when approximated the Five-Point Laplacian method using the discrete maximum principle. The primary objective is to assess the accuracy of this numerical approach in solving Poisson’s equation and to provide insights into the behavior of error estimates. We focus on the estimates of maximum norm of the discrete functions defined on a grid in a unit square as well as in a square of side s, and estimate errors measured in the maximum norm.
利用离散最大值原理求解五点拉普拉斯近似泊松方程的最大规范误差估计值
在本文中,我们研究了利用离散最大值原理近似五点拉普拉斯方法数值求解泊松方程时的最大值规范误差估计。主要目的是评估这种数值方法在求解泊松方程时的准确性,并深入了解误差估计的行为。我们重点研究了在单位正方形和边长为 s 的正方形网格上定义的离散函数的最大法的估计,并估计了以最大法测量的误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信