{"title":"Resilient Artificial Bee Colony Optimized AODV Routing Protocol (RABCO-AODV-RP) for Minimizing the Energy Consumption in Flying Ad-Hoc Network","authors":"S. Nandhini, K. S. Jeen Marseline","doi":"10.22247/ijcna/2024/224434","DOIUrl":null,"url":null,"abstract":"– Flying Ad-Hoc Networks (FANETs) have gained prominence in various applications, ranging from surveillance to disaster response. Their dynamic and resource-constrained nature makes efficient energy utilization a paramount concern. One significant challenge in FANETs is minimizing energy consumption, which is essential for prolonging the network lifetime and ensuring continuous operation. This paper introduces the Resilient Artificial Bee Colony Optimized AODV Routing Protocol (RABCO-AODV-RP) to address this challenge. RABCO-AODV-RP leverages the Artificial Bee Colony optimization algorithm to enhance AODV routing, optimizing route selection to minimize energy consumption while maintaining network resilience. The working mechanism of RABCO-AODV-RP encompasses two primary phases: route discovery and route maintenance. During route discovery, the protocol intelligently selects energy-efficient paths using the optimization algorithm, reducing energy waste. In the route maintenance phase, RABCO-AODV-RP continuously adapts to network dynamics, updating routes to ensure efficient and resilient communication. Extensive simulations were conducted using the NS3 network simulator to assess its performance using packet delivery ratio, packet drop ratio, throughput, end-to-end delay, energy consumption and hop count as performance metrics. The results and discussions indicate that RABCO-AODV-RP outperforms traditional AODV routing protocol. It improves packet delivery, throughput and reduces packet drop ratio, end-to-end delay and hop count. This research underscores the potential of RABCO-AODV-RP as a promising solution for extending the operational lifetime of FANETs and ensuring reliable communication in demanding environments.","PeriodicalId":36485,"journal":{"name":"International Journal of Computer Networks and Applications","volume":"173 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Networks and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22247/ijcna/2024/224434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
– Flying Ad-Hoc Networks (FANETs) have gained prominence in various applications, ranging from surveillance to disaster response. Their dynamic and resource-constrained nature makes efficient energy utilization a paramount concern. One significant challenge in FANETs is minimizing energy consumption, which is essential for prolonging the network lifetime and ensuring continuous operation. This paper introduces the Resilient Artificial Bee Colony Optimized AODV Routing Protocol (RABCO-AODV-RP) to address this challenge. RABCO-AODV-RP leverages the Artificial Bee Colony optimization algorithm to enhance AODV routing, optimizing route selection to minimize energy consumption while maintaining network resilience. The working mechanism of RABCO-AODV-RP encompasses two primary phases: route discovery and route maintenance. During route discovery, the protocol intelligently selects energy-efficient paths using the optimization algorithm, reducing energy waste. In the route maintenance phase, RABCO-AODV-RP continuously adapts to network dynamics, updating routes to ensure efficient and resilient communication. Extensive simulations were conducted using the NS3 network simulator to assess its performance using packet delivery ratio, packet drop ratio, throughput, end-to-end delay, energy consumption and hop count as performance metrics. The results and discussions indicate that RABCO-AODV-RP outperforms traditional AODV routing protocol. It improves packet delivery, throughput and reduces packet drop ratio, end-to-end delay and hop count. This research underscores the potential of RABCO-AODV-RP as a promising solution for extending the operational lifetime of FANETs and ensuring reliable communication in demanding environments.