Performance analysis of waste biomass gasification and renewable hydrogen production by neural network algorithm

Gabriel Gomes Vargas, Pablo Silva Ortiz, Silvio de Oliveira Junior
{"title":"Performance analysis of waste biomass gasification and renewable hydrogen production by neural network algorithm","authors":"Gabriel Gomes Vargas, Pablo Silva Ortiz, Silvio de Oliveira Junior","doi":"10.1115/1.4064849","DOIUrl":null,"url":null,"abstract":"\n This study assesses renewable hydrogen production via gasification of residual biomass, using Artificial Neural Networks (ANNs) for predictive modeling. The process uses residues from sugarcane and orange harvests, sewage sludge, corn byproducts, coffee remnants, eucalyptus remains, and urban waste. Simulation data from Aspen Plus® software predicts hydrogen conversion from each biomass type, with a 3-layer feedforward neural network algorithm used for model construction. The model showed high accuracy, with R2 values exceeding 0.9941 and 0.9931 in training and testing datasets, respectively. Performance metrics revealed maximum HHV of 18.1 MJ/kg for sewage sludge, highest cold gas efficiency for urban and orange waste (82.2% and 80.6%), and highest carbon conversion efficiency for sugarcane bagasse and orange residue (92.8% and 91.2%). Corn waste and sewage sludge yielded the highest hydrogen mole fractions (0.55 and 0.52). The system can reach relative exergy efficiencies from 24.4% for sugarcane straw residues to 42.6% for sugarcane bagasse. Rational exergy efficiencies reached from 23.7% (coffee waste) to 39.0% (sugarcane bagasse). This research highlights the potential of ANNs in forecasting hydrogen conversion and assessing the performance of gasification-based renewable hydrogen procedures using biomass wastes.","PeriodicalId":509700,"journal":{"name":"Journal of Energy Resources Technology","volume":"94 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Resources Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4064849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study assesses renewable hydrogen production via gasification of residual biomass, using Artificial Neural Networks (ANNs) for predictive modeling. The process uses residues from sugarcane and orange harvests, sewage sludge, corn byproducts, coffee remnants, eucalyptus remains, and urban waste. Simulation data from Aspen Plus® software predicts hydrogen conversion from each biomass type, with a 3-layer feedforward neural network algorithm used for model construction. The model showed high accuracy, with R2 values exceeding 0.9941 and 0.9931 in training and testing datasets, respectively. Performance metrics revealed maximum HHV of 18.1 MJ/kg for sewage sludge, highest cold gas efficiency for urban and orange waste (82.2% and 80.6%), and highest carbon conversion efficiency for sugarcane bagasse and orange residue (92.8% and 91.2%). Corn waste and sewage sludge yielded the highest hydrogen mole fractions (0.55 and 0.52). The system can reach relative exergy efficiencies from 24.4% for sugarcane straw residues to 42.6% for sugarcane bagasse. Rational exergy efficiencies reached from 23.7% (coffee waste) to 39.0% (sugarcane bagasse). This research highlights the potential of ANNs in forecasting hydrogen conversion and assessing the performance of gasification-based renewable hydrogen procedures using biomass wastes.
利用神经网络算法对废弃生物质气化和可再生制氢进行性能分析
本研究利用人工神经网络(ANN)进行预测建模,评估了通过气化残留生物质生产可再生氢的情况。该工艺使用甘蔗和橘子收获后的残渣、污水污泥、玉米副产品、咖啡残渣、桉树残渣和城市垃圾。Aspen Plus® 软件提供的模拟数据可预测每种生物质的氢转化率,并采用 3 层前馈神经网络算法构建模型。该模型显示出很高的准确性,在训练和测试数据集中的 R2 值分别超过 0.9941 和 0.9931。性能指标显示,污水污泥的最高 HHV 值为 18.1 兆焦耳/千克,城市垃圾和橘子废料的冷气效率最高(82.2% 和 80.6%),甘蔗渣和橘子渣的碳转化效率最高(92.8% 和 91.2%)。玉米废料和污水污泥产生的氢分子分数最高(0.55 和 0.52)。该系统的相对能效从甘蔗秸秆残渣的 24.4% 到甘蔗渣的 42.6%。合理能效从 23.7%(咖啡废料)到 39.0%(甘蔗渣)不等。这项研究凸显了人工智能网络在预测氢转化和评估使用生物质废物的气化可再生氢程序性能方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信