Forecasting the Financial Soundness of Indonesia’s National Board of Zakat (BAZNAS) Using Artificial Neural Network Models

TEM Journal Pub Date : 2024-02-27 DOI:10.18421/tem131-63
S. Syamsuri, F. Johari, Nadhilah Nadhilah, Yaumi Sa’adah
{"title":"Forecasting the Financial Soundness of Indonesia’s National Board of Zakat (BAZNAS) Using Artificial Neural Network Models","authors":"S. Syamsuri, F. Johari, Nadhilah Nadhilah, Yaumi Sa’adah","doi":"10.18421/tem131-63","DOIUrl":null,"url":null,"abstract":"The potential value of zakat in Indonesia in 2021 was estimated at RP 13.529 trillion; however, the actual amount of zakat collected was only RP 571 billion. Thus, this study aims to develop a precise financial soundness forecasting model for the National Board of Zakat (BAZNAS) in Indonesia using multiple linear regression (MLR) and artificial neural networks (ANN) with three algorithms to investigate, compare, and interpret the obtained results for better forecasting. The information was extracted from the financial statements of six BAZNAS for the period spanning year 2017 to 2021. The study determined unique and best models for each current ratio, cash ratio, and quick ratio. The results highlighted two models deemed best for forecasting Indonesia's BAZNAS financial soundness: MLR and ANN with Scaled Conjugate Gradient (SCG) training algorithm and MLR and ANN with Bayesian Regularization (BR). The research implications could help decision-makers strategise for the financial health of other Zakat organisations accordingly.","PeriodicalId":515899,"journal":{"name":"TEM Journal","volume":"39 25","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TEM Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18421/tem131-63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The potential value of zakat in Indonesia in 2021 was estimated at RP 13.529 trillion; however, the actual amount of zakat collected was only RP 571 billion. Thus, this study aims to develop a precise financial soundness forecasting model for the National Board of Zakat (BAZNAS) in Indonesia using multiple linear regression (MLR) and artificial neural networks (ANN) with three algorithms to investigate, compare, and interpret the obtained results for better forecasting. The information was extracted from the financial statements of six BAZNAS for the period spanning year 2017 to 2021. The study determined unique and best models for each current ratio, cash ratio, and quick ratio. The results highlighted two models deemed best for forecasting Indonesia's BAZNAS financial soundness: MLR and ANN with Scaled Conjugate Gradient (SCG) training algorithm and MLR and ANN with Bayesian Regularization (BR). The research implications could help decision-makers strategise for the financial health of other Zakat organisations accordingly.
利用人工神经网络模型预测印度尼西亚国家天课委员会(BAZNAS)的财务稳健性
据估计,2021 年印尼天课的潜在价值为 13.529 万亿印尼盾,但实际收取的天课仅为 5,710 亿印尼盾。因此,本研究旨在使用多元线性回归(MLR)和人工神经网络(ANN)三种算法,为印尼国家天课委员会(BAZNAS)开发一个精确的财务稳健性预测模型,以研究、比较和解释所获得的结果,从而更好地进行预测。研究信息摘自六家印尼国家银行(BAZNAS)2017 年至 2021 年的财务报表。研究为每个流动比率、现金比率和速动比率确定了独特的最佳模型。研究结果突出了两个被认为最适合预测印尼 BAZNAS 财务稳健性的模型:采用缩放共轭梯度(SCG)训练算法的 MLR 和 ANN,以及采用贝叶斯正则化(BR)的 MLR 和 ANN。这些研究成果可帮助决策者为其他扎卡特组织的财务健康状况制定相应的战略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信