{"title":"Geometrik Cebir: Etkin Bir Modelleme ve Analiz Yaklaşımı","authors":"Seda Doğan","doi":"10.48123/rsgis.1415971","DOIUrl":null,"url":null,"abstract":"Bu makalede, iç ve dış çarpım işlemlerini ve bunların tanımladığı iç ve dış çarpım uzaylarının birleştirilmesine olanak sağlayan yeni bir geometri ve bu geometrinin kuruluşunu sağlayan cebir anlatılmıştır. Geometrik cebir adı verilen bu yeni yaklaşım, Clifford cebri olarak da anılmaktadır. Kuaternionlardan daha etkili dönme özellikleri ve tensörlerden daha kolay anlaşılır yapısı ile geometrik cebrin mühendislik alanlarında büyük yenilikler getireceği değerlendirilmektedir. Bu yapının kolay anlaşılabilmesi için gerekli olan ilk kurucu aksiyomların anlaşılması ve bunlarla cebrin nasıl bir düşünce yapısı ile kurulduğunun ortaya konması gerekir. Bu makalede, bu ilk kurucu aksiyomlar ele alınmış ve cebrin kuruluşu anlatılmıştır. Bir kez cebir oluşturulunca, bu cebri daha üst boyutlara genellemek mümkündür. Klasik cebrik yapılarla anlaşılması güç hatta kimi zaman olanaksız olan üst boyutlardaki bazı ilişkilerin açıklanması geometrik cebir ile kolaylaşmaktadır. Örneğin projektif geometri 4-boyutlu geometrik cebrik uzayla, konformal geometri 5-boyutlu geometrik cebrik uzayla kurulabilmekte ve bu uzaylardaki tüm ilişkiler ifade edilebilmektedir. Makale bu konulara girilmeden, geometrik cebrin tanıtılmasını, aksiyomlarla cebrin kuruluşunu ve bu sayede temel mantığının kolay anlaşılmasını amaçlamıştır.","PeriodicalId":123452,"journal":{"name":"Turkish Journal of Remote Sensing and GIS","volume":"9 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Remote Sensing and GIS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48123/rsgis.1415971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Bu makalede, iç ve dış çarpım işlemlerini ve bunların tanımladığı iç ve dış çarpım uzaylarının birleştirilmesine olanak sağlayan yeni bir geometri ve bu geometrinin kuruluşunu sağlayan cebir anlatılmıştır. Geometrik cebir adı verilen bu yeni yaklaşım, Clifford cebri olarak da anılmaktadır. Kuaternionlardan daha etkili dönme özellikleri ve tensörlerden daha kolay anlaşılır yapısı ile geometrik cebrin mühendislik alanlarında büyük yenilikler getireceği değerlendirilmektedir. Bu yapının kolay anlaşılabilmesi için gerekli olan ilk kurucu aksiyomların anlaşılması ve bunlarla cebrin nasıl bir düşünce yapısı ile kurulduğunun ortaya konması gerekir. Bu makalede, bu ilk kurucu aksiyomlar ele alınmış ve cebrin kuruluşu anlatılmıştır. Bir kez cebir oluşturulunca, bu cebri daha üst boyutlara genellemek mümkündür. Klasik cebrik yapılarla anlaşılması güç hatta kimi zaman olanaksız olan üst boyutlardaki bazı ilişkilerin açıklanması geometrik cebir ile kolaylaşmaktadır. Örneğin projektif geometri 4-boyutlu geometrik cebrik uzayla, konformal geometri 5-boyutlu geometrik cebrik uzayla kurulabilmekte ve bu uzaylardaki tüm ilişkiler ifade edilebilmektedir. Makale bu konulara girilmeden, geometrik cebrin tanıtılmasını, aksiyomlarla cebrin kuruluşunu ve bu sayede temel mantığının kolay anlaşılmasını amaçlamıştır.