{"title":"Lead-free BaTiO3-based relaxor ferroelectric thin film rendering rapid discharge rate for pulsed power energy application","authors":"Shanmuga Priya Karmegam, P. Murugavel","doi":"10.1063/5.0193955","DOIUrl":null,"url":null,"abstract":"Ferroelectric thin film capacitors have large application potential in pulsed-power electronic and electrical systems due to their high-power density and rapid discharge capabilities. Although lead-based dielectrics are promising, the pursuit of eco-friendly, lead-free alternatives is gaining research attention. Here, the Bi and Li co-doped BaTiO3 thin film exhibiting relaxor ferroelectric properties was investigated for its energy storage properties. The fabricated polycrystalline Ba0.85(Bi0.5Li0.5)0.15TiO3 thin film by pulsed laser deposition revealed good breakdown strength (∼4 MV cm−1), a slim ferroelectric loop, and low leakage characteristics suitable for energy storage applications. The film exhibits a significant value of recoverable energy density (∼70 J cm−3) with better frequency and thermal stability. Notably, the better overall performance parameters of the film, including a sizable power density (261 MW cm−3) and a fast discharge rate (150 ns), along with good energy density and breakdown strength, make the material suitable for pulsed-power energy applications.","PeriodicalId":505149,"journal":{"name":"APL Energy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0193955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Ferroelectric thin film capacitors have large application potential in pulsed-power electronic and electrical systems due to their high-power density and rapid discharge capabilities. Although lead-based dielectrics are promising, the pursuit of eco-friendly, lead-free alternatives is gaining research attention. Here, the Bi and Li co-doped BaTiO3 thin film exhibiting relaxor ferroelectric properties was investigated for its energy storage properties. The fabricated polycrystalline Ba0.85(Bi0.5Li0.5)0.15TiO3 thin film by pulsed laser deposition revealed good breakdown strength (∼4 MV cm−1), a slim ferroelectric loop, and low leakage characteristics suitable for energy storage applications. The film exhibits a significant value of recoverable energy density (∼70 J cm−3) with better frequency and thermal stability. Notably, the better overall performance parameters of the film, including a sizable power density (261 MW cm−3) and a fast discharge rate (150 ns), along with good energy density and breakdown strength, make the material suitable for pulsed-power energy applications.