Enhancing Credit Card Fraud Detection: A Neural Network and SMOTE Integrated Approach

Mengran Zhu, Ye Zhang, Yulu Gong, Changxin Xu, Yafei Xiang
{"title":"Enhancing Credit Card Fraud Detection: A Neural Network and SMOTE Integrated Approach","authors":"Mengran Zhu, Ye Zhang, Yulu Gong, Changxin Xu, Yafei Xiang","doi":"10.53469/jtpes.2024.04(02).04","DOIUrl":null,"url":null,"abstract":"Credit card fraud detection is a critical challenge in the financial sector, demanding sophisticated approaches to accurately identify fraudulent transactions. This research proposes an innovative methodology combining Neural Networks (NN) and Synthetic Minority Over-sampling Technique (SMOTE) to enhance the detection performance. The study addresses the inherent imbalance in credit card transaction data, focusing on technical advancements for robust and precise fraud detection. Results demonstrate that the integration of NN and SMOTE exhibits superior precision, recall, and F1-score compared to traditional models, highlighting its potential as an advanced solution for handling imbalanced datasets in credit card fraud detection scenarios. This research contributes to the ongoing efforts to develop effective and efficient mechanisms for safeguarding financial transactions from fraudulent activities.","PeriodicalId":489516,"journal":{"name":"Journal of Theory and Practice of Engineering Science","volume":"112 17","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theory and Practice of Engineering Science","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.53469/jtpes.2024.04(02).04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Credit card fraud detection is a critical challenge in the financial sector, demanding sophisticated approaches to accurately identify fraudulent transactions. This research proposes an innovative methodology combining Neural Networks (NN) and Synthetic Minority Over-sampling Technique (SMOTE) to enhance the detection performance. The study addresses the inherent imbalance in credit card transaction data, focusing on technical advancements for robust and precise fraud detection. Results demonstrate that the integration of NN and SMOTE exhibits superior precision, recall, and F1-score compared to traditional models, highlighting its potential as an advanced solution for handling imbalanced datasets in credit card fraud detection scenarios. This research contributes to the ongoing efforts to develop effective and efficient mechanisms for safeguarding financial transactions from fraudulent activities.
加强信用卡欺诈检测:神经网络和 SMOTE 集成方法
信用卡欺诈检测是金融行业面临的一项严峻挑战,需要复杂的方法来准确识别欺诈交易。本研究提出了一种结合神经网络(NN)和合成少数群体过度采样技术(SMOTE)的创新方法,以提高检测性能。该研究解决了信用卡交易数据固有的不平衡问题,重点关注技术进步,以实现稳健、精确的欺诈检测。研究结果表明,与传统模型相比,NN 和 SMOTE 的集成在精确度、召回率和 F1 分数方面都表现出了更高的水平,突出了其作为处理信用卡欺诈检测场景中不平衡数据集的先进解决方案的潜力。这项研究有助于不断努力开发有效和高效的机制,以保护金融交易免受欺诈活动的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信