Two-Stage Limited-Information Estimation for Structural Equation Models of Round-Robin Variables

Stats Pub Date : 2024-02-28 DOI:10.3390/stats7010015
Terrence D. Jorgensen, Aditi M. Bhangale, Yves Rosseel
{"title":"Two-Stage Limited-Information Estimation for Structural Equation Models of Round-Robin Variables","authors":"Terrence D. Jorgensen, Aditi M. Bhangale, Yves Rosseel","doi":"10.3390/stats7010015","DOIUrl":null,"url":null,"abstract":"We propose and demonstrate a new two-stage maximum likelihood estimator for parameters of a social relations structural equation model (SR-SEM) using estimated summary statistics (Σ^) as data, as well as uncertainty about Σ^ to obtain robust inferential statistics. The SR-SEM is a generalization of a traditional SEM for round-robin data, which have a dyadic network structure (i.e., each group member responds to or interacts with each other member). Our two-stage estimator is developed using similar logic as previous two-stage estimators for SEM, developed for application to multilevel data and multiple imputations of missing data. We demonstrate out estimator on a publicly available data set from a 2018 publication about social mimicry. We employ Markov chain Monte Carlo estimation of Σ^ in Stage 1, implemented using the R package rstan. In Stage 2, the posterior mean estimates of Σ^ are used as input data to estimate SEM parameters with the R package lavaan. The posterior covariance matrix of estimated Σ^ is also calculated so that lavaan can use it to calculate robust standard errors and test statistics. Results are compared to full-information maximum likelihood (FIML) estimation of SR-SEM parameters using the R package srm. We discuss how differences between estimators highlight the need for future research to establish best practices under realistic conditions (e.g., how to specify empirical Bayes priors in Stage 1), as well as extensions that would make 2-stage estimation particularly advantageous over single-stage FIML.","PeriodicalId":503278,"journal":{"name":"Stats","volume":"69 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stats","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/stats7010015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose and demonstrate a new two-stage maximum likelihood estimator for parameters of a social relations structural equation model (SR-SEM) using estimated summary statistics (Σ^) as data, as well as uncertainty about Σ^ to obtain robust inferential statistics. The SR-SEM is a generalization of a traditional SEM for round-robin data, which have a dyadic network structure (i.e., each group member responds to or interacts with each other member). Our two-stage estimator is developed using similar logic as previous two-stage estimators for SEM, developed for application to multilevel data and multiple imputations of missing data. We demonstrate out estimator on a publicly available data set from a 2018 publication about social mimicry. We employ Markov chain Monte Carlo estimation of Σ^ in Stage 1, implemented using the R package rstan. In Stage 2, the posterior mean estimates of Σ^ are used as input data to estimate SEM parameters with the R package lavaan. The posterior covariance matrix of estimated Σ^ is also calculated so that lavaan can use it to calculate robust standard errors and test statistics. Results are compared to full-information maximum likelihood (FIML) estimation of SR-SEM parameters using the R package srm. We discuss how differences between estimators highlight the need for future research to establish best practices under realistic conditions (e.g., how to specify empirical Bayes priors in Stage 1), as well as extensions that would make 2-stage estimation particularly advantageous over single-stage FIML.
循环变量结构方程模型的两阶段有限信息估计
我们提出并演示了一种新的社会关系结构方程模型(SR-SEM)参数两阶段最大似然估计法,该估计法使用估计的汇总统计量(Σ^)作为数据,并使用Σ^ 的不确定性来获得稳健的推断统计量。SR-SEM 是传统 SEM 的一般化,适用于具有二元网络结构(即每个组员都对其他组员做出反应或与其他组员互动)的循环数据。我们的两阶段估计器的开发逻辑与之前的 SEM 两阶段估计器类似,都是为了应用于多层次数据和缺失数据的多重估算而开发的。我们在 2018 年发表的一篇关于社会模仿的文章中的公开数据集上演示了该估计器。我们在第一阶段采用马尔科夫链蒙特卡罗估计Σ^,使用 R 软件包 rstan 实现。在第二阶段,Σ^ 的后验均值估计值被用作输入数据,用 R 软件包 lavaan 估计 SEM 参数。此外,还计算了估计值 Σ^ 的后验协方差矩阵,以便 lavaan 使用它来计算稳健标准误差和检验统计量。结果与使用 R 软件包 srm 对 SR-SEM 参数进行的全信息最大似然估计(FIML)进行了比较。我们讨论了估计器之间的差异如何凸显了未来研究的必要性,以建立现实条件下的最佳实践(例如,如何在第一阶段指定经验贝叶斯先验),以及使两阶段估计比单阶段 FIML 更具优势的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信