Advancing Legal Citation Text Classification A Conv1D-Based Approach for Multi-Class Classification

Ying Xie, Zhengning Li, Yibo Yin, Zibu Wei, Guokun Xu, Yang Luo
{"title":"Advancing Legal Citation Text Classification A Conv1D-Based Approach for Multi-Class Classification","authors":"Ying Xie, Zhengning Li, Yibo Yin, Zibu Wei, Guokun Xu, Yang Luo","doi":"10.53469/jtpes.2024.04(02).03","DOIUrl":null,"url":null,"abstract":"The escalating volume and intricacy of legal documents necessitate advanced techniques for automated text classification in the legal domain. Our proposed approach leverages Convolutional Neural Networks (Conv1D), a neural network architecture adept at capturing hierarchical features in sequential data. The incorporation of max-pooling facilitates the extraction of salient features, while softmax activation enables the model to handle the multi-class nature of legal citation categorization. By addressing the limitations identified in previous studies, our model aims to advance the state-of-the-art in legal citation text classification, offering a robust and efficient solution for automated categorization in the legal domain. Our research contributes to the ongoing evolution of NLP applications in the legal field, promising enhanced accuracy and adaptability in the automated analysis of legal texts.","PeriodicalId":489516,"journal":{"name":"Journal of Theory and Practice of Engineering Science","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theory and Practice of Engineering Science","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.53469/jtpes.2024.04(02).03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The escalating volume and intricacy of legal documents necessitate advanced techniques for automated text classification in the legal domain. Our proposed approach leverages Convolutional Neural Networks (Conv1D), a neural network architecture adept at capturing hierarchical features in sequential data. The incorporation of max-pooling facilitates the extraction of salient features, while softmax activation enables the model to handle the multi-class nature of legal citation categorization. By addressing the limitations identified in previous studies, our model aims to advance the state-of-the-art in legal citation text classification, offering a robust and efficient solution for automated categorization in the legal domain. Our research contributes to the ongoing evolution of NLP applications in the legal field, promising enhanced accuracy and adaptability in the automated analysis of legal texts.
推进法律引文文本分类 基于 Conv1D 的多类分类方法
法律文件的数量和复杂性不断增加,这就需要在法律领域采用先进的自动文本分类技术。我们提出的方法利用了卷积神经网络(Conv1D),这是一种善于捕捉连续数据中分层特征的神经网络架构。最大池化(max-pooling)技术的采用有助于提取突出特征,而软最大激活(softmax activation)技术则使模型能够处理法律引文分类的多类性质。通过解决以往研究中发现的局限性,我们的模型旨在推进法律引文文本分类的先进水平,为法律领域的自动分类提供一个强大而高效的解决方案。我们的研究为法律领域 NLP 应用的不断发展做出了贡献,有望提高法律文本自动分析的准确性和适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信