Reconfigurable Intelligent Surface-based Propagation Control in FBMC/OQAM Systems

Q4 Engineering
R. Patra, A. Mahapatro
{"title":"Reconfigurable Intelligent Surface-based Propagation Control in FBMC/OQAM Systems","authors":"R. Patra, A. Mahapatro","doi":"10.26636/jtit.2024.1.1326","DOIUrl":null,"url":null,"abstract":"In this paper, transmission of filter bank multi-carrier (FBMC) modulated signal through reconfigurable intelligent surfaces (RIS) is proposed as an assuring technique for future wireless communication. RIS deliberately alters phases of incident signals to enhance quality of the received signal. Simulation outcomes show that it is possible to establish RIS-based FBMC communications in which RIS functions as an intelligent reflector with information concerning channel phases. It is observed that RIS-based FBMC transmissions may be a prospective solution for beyond 5G communication.","PeriodicalId":38425,"journal":{"name":"Journal of Telecommunications and Information Technology","volume":"306 1‐2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Telecommunications and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26636/jtit.2024.1.1326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, transmission of filter bank multi-carrier (FBMC) modulated signal through reconfigurable intelligent surfaces (RIS) is proposed as an assuring technique for future wireless communication. RIS deliberately alters phases of incident signals to enhance quality of the received signal. Simulation outcomes show that it is possible to establish RIS-based FBMC communications in which RIS functions as an intelligent reflector with information concerning channel phases. It is observed that RIS-based FBMC transmissions may be a prospective solution for beyond 5G communication.
FBMC/OQAM 系统中基于表面的可重构智能传播控制
本文提出通过可重构智能表面(RIS)传输滤波器组多载波(FBMC)调制信号,作为未来无线通信的保证技术。RIS 会刻意改变入射信号的相位,以提高接收信号的质量。仿真结果表明,可以建立基于 RIS 的 FBMC 通信,在这种通信中,RIS 充当智能反射器,提供有关信道相位的信息。据观察,基于 RIS 的 FBMC 传输可能是超越 5G 通信的一种前瞻性解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Telecommunications and Information Technology
Journal of Telecommunications and Information Technology Engineering-Electrical and Electronic Engineering
CiteScore
1.20
自引率
0.00%
发文量
34
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信