Aleksandra Kozlova, Alina Dzharullaeva, Amir Tukhvatulin, I. Zakroyshchikova, T. Simaniv, Lola Askarova, D. Eliseeva, Natalia Stoida, I. Kochergin, E. Baydina, M. Zakharova
{"title":"Myelitis associated with COVID-19: clinical, radiological, and laboratory characteristics","authors":"Aleksandra Kozlova, Alina Dzharullaeva, Amir Tukhvatulin, I. Zakroyshchikova, T. Simaniv, Lola Askarova, D. Eliseeva, Natalia Stoida, I. Kochergin, E. Baydina, M. Zakharova","doi":"10.37349/ei.2024.00132","DOIUrl":null,"url":null,"abstract":"Aim: The current study aimed to describe various types of myelitis associated with a novel coronavirus infection [coronavirus disease 2019 (COVID-19)] as well as to analyze cytokine profiles and cerebrospinal fluid (CSF) parameters in affected patients and to compare them to patients with other immune-mediated disorders—multiple sclerosis (MS), in order to identify possible common pathogenetic pathways and consequently treatment targets.\nMethods: Clinical, radiological, and laboratory characteristics were studied based on patients’ history. CSF from patients with myelitis associated with COVID-19 (11 patients) was compared with CSF of healthy controls (HC) (7 patients) and patients with MS (37 patients) from the non-COVID era. CSF cytological examination, protein levels and oligoclonal bands (OCBs) evaluation, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus detection and cytokine profiling using Bio-Plex Pro Human Inflammation Panel 1, 37-Plex were performed.\nResults: In total 11 patients with different types of myelitis developed up to 3 months after COVID-19 were enrolled in the study. Radiological findings were diverse: short transverse myelitis (lesion of fewer than 3 segments) (n = 6), longitudinal extensive transverse myelitis (LETM) (n = 2), multifocal spinal cord lesions (n = 1), and myelitis involving dorsal and lateral columns (n = 2). The most pronounced response to treatment was observed in patients with partial transverse myelitis and patients with anti-myelin oligodendrocyte glycoprotein (MOG) antibodies (MOG Abs). Multiple comparisons have demonstrated decreased levels of interleukin-10 (IL-10), interferon-α2 (IFN-α2), IFN-β, and thymic stromal lymphopoietin (TSLP), and increased IL-19 and B cell activating factor (BAFF) in patients with COVID-19 myelitis (CM) compared to the MS group. The highest BAFF and a proliferation-inducing ligand (APRIL) concentrations were found in patients with the most profound neurological disability.\nConclusions: Myelitis associated with COVID-19 is clinically and radiologically heterogeneous. Evaluation of cytokine profiles in patients with myelitis associated with COVID-19 revealed their relative similarity with ones of MS patients, except for a few cytokines. BAFF/APRIL system as well as IL-10 is well-known for the role in the development and progression of autoimmune diseases, however, their links with COVID-19 and effects on the development of immune-mediated central nervous system (CNS) disorders after SARS-CoV-2 remain to be further studied.","PeriodicalId":93552,"journal":{"name":"Exploration of immunology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Exploration of immunology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37349/ei.2024.00132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: The current study aimed to describe various types of myelitis associated with a novel coronavirus infection [coronavirus disease 2019 (COVID-19)] as well as to analyze cytokine profiles and cerebrospinal fluid (CSF) parameters in affected patients and to compare them to patients with other immune-mediated disorders—multiple sclerosis (MS), in order to identify possible common pathogenetic pathways and consequently treatment targets.
Methods: Clinical, radiological, and laboratory characteristics were studied based on patients’ history. CSF from patients with myelitis associated with COVID-19 (11 patients) was compared with CSF of healthy controls (HC) (7 patients) and patients with MS (37 patients) from the non-COVID era. CSF cytological examination, protein levels and oligoclonal bands (OCBs) evaluation, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus detection and cytokine profiling using Bio-Plex Pro Human Inflammation Panel 1, 37-Plex were performed.
Results: In total 11 patients with different types of myelitis developed up to 3 months after COVID-19 were enrolled in the study. Radiological findings were diverse: short transverse myelitis (lesion of fewer than 3 segments) (n = 6), longitudinal extensive transverse myelitis (LETM) (n = 2), multifocal spinal cord lesions (n = 1), and myelitis involving dorsal and lateral columns (n = 2). The most pronounced response to treatment was observed in patients with partial transverse myelitis and patients with anti-myelin oligodendrocyte glycoprotein (MOG) antibodies (MOG Abs). Multiple comparisons have demonstrated decreased levels of interleukin-10 (IL-10), interferon-α2 (IFN-α2), IFN-β, and thymic stromal lymphopoietin (TSLP), and increased IL-19 and B cell activating factor (BAFF) in patients with COVID-19 myelitis (CM) compared to the MS group. The highest BAFF and a proliferation-inducing ligand (APRIL) concentrations were found in patients with the most profound neurological disability.
Conclusions: Myelitis associated with COVID-19 is clinically and radiologically heterogeneous. Evaluation of cytokine profiles in patients with myelitis associated with COVID-19 revealed their relative similarity with ones of MS patients, except for a few cytokines. BAFF/APRIL system as well as IL-10 is well-known for the role in the development and progression of autoimmune diseases, however, their links with COVID-19 and effects on the development of immune-mediated central nervous system (CNS) disorders after SARS-CoV-2 remain to be further studied.