P-Rational Submodules

Q4 Earth and Planetary Sciences
Maria Mohammed Baher, Muna Abbas Ahmed
{"title":"P-Rational Submodules","authors":"Maria Mohammed Baher, Muna Abbas Ahmed","doi":"10.24996/ijs.2024.65.2.25","DOIUrl":null,"url":null,"abstract":"     A submodule N is called rational in M if ( , E(M))=0, where E(M) is the an injective hull of M. Rational submodules have been studied and discussed by many authors such as H.H. Storrer, H. Khabazian, E. Ghashghaei, A. Hajikarimi, M.S. Abbas and M.S. Nayef. The main objective of this paper is to give a new class of submodules named P-rational submodules. This class is contained properly in the class of rational submodules. Several properties of this concept are introduced. The relationships between this class of submodules and some other related concepts are discussed such as essential and quasi-invertible submodules. Other characterizations of the P-rational submodule analogous to those which is known in the concept of the rational submodule are given.","PeriodicalId":14698,"journal":{"name":"Iraqi Journal of Science","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iraqi Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24996/ijs.2024.65.2.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

     A submodule N is called rational in M if ( , E(M))=0, where E(M) is the an injective hull of M. Rational submodules have been studied and discussed by many authors such as H.H. Storrer, H. Khabazian, E. Ghashghaei, A. Hajikarimi, M.S. Abbas and M.S. Nayef. The main objective of this paper is to give a new class of submodules named P-rational submodules. This class is contained properly in the class of rational submodules. Several properties of this concept are introduced. The relationships between this class of submodules and some other related concepts are discussed such as essential and quasi-invertible submodules. Other characterizations of the P-rational submodule analogous to those which is known in the concept of the rational submodule are given.
P 理子模子
如果 ( ,E(M))=0,其中 E(M) 是 M 的一个注入环,那么 M 中的子模块 N 称为有理子模块。有理子模块已经被许多学者研究和讨论过,如 H.H. Storrer、H. Khabazian、E. Ghashghaei、A. Hajikarimi、M.S. Abbas 和 M.S. Nayef。本文的主要目的是给出一类新的子模子,命名为 P 理子模子。这类子模包含在有理子模类中。本文介绍了这一概念的若干性质。本文还讨论了该类子模子与其他一些相关概念(如本质子模子和准不可逆子模子)之间的关系。还给出了 P 有理子模块的其他特征,这些特征与有理子模块概念中已知的特征类似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Iraqi Journal of Science
Iraqi Journal of Science Chemistry-Chemistry (all)
CiteScore
1.50
自引率
0.00%
发文量
241
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信