РЕАЛІЗАЦІЯ МІЖПРЕДМЕТНИХ ЗВ’ЯЗКІВ ТЕХНОЛОГІЙ ТА ПРИРОДНИЧИХ ДИСЦИПЛІН ІЗ ВИКОРИСТАННЯМ 3D МОДЕЛЮВАННЯ

Юрій Фещук, Володимир Мислінчук
{"title":"РЕАЛІЗАЦІЯ МІЖПРЕДМЕТНИХ ЗВ’ЯЗКІВ ТЕХНОЛОГІЙ ТА ПРИРОДНИЧИХ ДИСЦИПЛІН ІЗ ВИКОРИСТАННЯМ 3D МОДЕЛЮВАННЯ","authors":"Юрій Фещук, Володимир Мислінчук","doi":"10.31110/2616-650x-vol12i2-011","DOIUrl":null,"url":null,"abstract":"На підставі теоретико-емпіричних досліджень визначено, що інтеграція навчання технологій та природничих дисциплін має ряд важливих переваг, підтримує збалансований та цілеспрямований підхід до освітнього процесу. Встановлено, що реалізація міжпредметних зв’язків з цих предметів сприяє: організації більш реалістичного та практичного навчання; розвитку критичного мислення учнів; розширенню знань у декількох областях; стимулюванню інтересу до навчання. У статті робиться акцент на 3D моделювання в процесі виготовлення фізичних (астрономічних) приладів під час проектної діяльності учнів на заняттях технологій (навчальний модуль «Комп’ютерне проектування»). Наводиться приклад виконання учнями творчого проекту «Комп’ютерне проектування сонячного годинника». Пропонується така послідовність виконання етапів проектної діяльності: визначення теми та завдань проекту; аналіз об’єкта проектування; пошук інформації; актуальної для проекту; вибір системи автоматизованого проектування; 3D моделювання; 3D друк; тестування виробу; презентація проекту; висновок. Встановлено, що крім моделювання та виготовлення фізичних (астрономічних) приладів, доцільно використовувати також інші варіанти інтеграції технологій і фізики: візуалізація та дослідження фізичних явищ (рух, сили, електромагнетизм та інші); створення 3D моделей об’єктів, які дозволяють учням вивчати та експериментувати з фізичними законами; створення та вдосконалення технічних пристроїв або механізмів, які можна було б вивчати в рамках обох дисциплін; створення та аналіз електричних схем, вивчення основних компонентів електричних схем, з’єднання та взаємодії між ними; створення симуляцій теплових процесів, таких як теплопередача чи розширення речовин: спостереження та аналіз теплових явищ у віртуальному середовищі. Перспективи подальшої роботи полягають у розробці методичних рекомендацій щодо створення 3D моделей планет сонячної системи та інших астрономічних об’єктів, для ілюстрації фізичних законів, які діють в космосі.","PeriodicalId":388657,"journal":{"name":"Education. Innovation. Practice","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Education. Innovation. Practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31110/2616-650x-vol12i2-011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

На підставі теоретико-емпіричних досліджень визначено, що інтеграція навчання технологій та природничих дисциплін має ряд важливих переваг, підтримує збалансований та цілеспрямований підхід до освітнього процесу. Встановлено, що реалізація міжпредметних зв’язків з цих предметів сприяє: організації більш реалістичного та практичного навчання; розвитку критичного мислення учнів; розширенню знань у декількох областях; стимулюванню інтересу до навчання. У статті робиться акцент на 3D моделювання в процесі виготовлення фізичних (астрономічних) приладів під час проектної діяльності учнів на заняттях технологій (навчальний модуль «Комп’ютерне проектування»). Наводиться приклад виконання учнями творчого проекту «Комп’ютерне проектування сонячного годинника». Пропонується така послідовність виконання етапів проектної діяльності: визначення теми та завдань проекту; аналіз об’єкта проектування; пошук інформації; актуальної для проекту; вибір системи автоматизованого проектування; 3D моделювання; 3D друк; тестування виробу; презентація проекту; висновок. Встановлено, що крім моделювання та виготовлення фізичних (астрономічних) приладів, доцільно використовувати також інші варіанти інтеграції технологій і фізики: візуалізація та дослідження фізичних явищ (рух, сили, електромагнетизм та інші); створення 3D моделей об’єктів, які дозволяють учням вивчати та експериментувати з фізичними законами; створення та вдосконалення технічних пристроїв або механізмів, які можна було б вивчати в рамках обох дисциплін; створення та аналіз електричних схем, вивчення основних компонентів електричних схем, з’єднання та взаємодії між ними; створення симуляцій теплових процесів, таких як теплопередача чи розширення речовин: спостереження та аналіз теплових явищ у віртуальному середовищі. Перспективи подальшої роботи полягають у розробці методичних рекомендацій щодо створення 3D моделей планет сонячної системи та інших астрономічних об’єктів, для ілюстрації фізичних законів, які діють в космосі.
利用三维建模实现技术与自然科学之间的跨学科联系
根据理论和实证研究,我们已经确定,将教学技术与自然科学相结合具有许多重要的优势,有助于在教育过程中采取均衡和有目的的方法。研究表明,在这些学科中实施跨学科联系有助于:组织更真实、更实用的学习;培养学生的批判性思维;扩展多个领域的知识;激发学习兴趣。这篇文章的重点是学生在技术课("计算机辅助设计 "模块)的项目活动中制造物理(天文)仪器过程中的三维建模。文章介绍了一个创意项目 "日晷的计算机辅助设计 "的实例。项目活动的阶段顺序如下:确定项目的主题和任务;分析设计对象;搜索与项目相关的信息;选择计算机辅助设计系统;三维建模;三维打印;产品测试;项目展示;结论。已经确定,除了建模和制造物理(天文)仪器外,最好还采用其他方案来整合技术和物 理:物理现象(运动、力、电磁等)的可视化和研究;创建物体的三维模型,使学生能够研 究和实验物理规律;创建和改进可在两个学科内研究的技术装置或机制;创建和分析电路, 研究电路的主要组成部分,连接天文台和天文仪器;创建天文仪器的三维模型,使学生能够 研究和实验物理规律;创建和改进可在两个学科内研究的技术装置或机制;创建和分析电路, 研究电路的主要组成部分,连接天文台和天文仪器;创建和分析天文仪器的三维模型,使学 生能够研究和实验物理规律。进一步工作的前景包括为创建太阳系行星和其他天体的三维模型提出方法建议,以说明 在空间运行的物理规律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信