Task Scheduling in a Cloud Environment Based on Meta-Heuristic Approaches: A Survey

Q4 Earth and Planetary Sciences
D. R. Abdulrazzaq, N. M. Shati, Haider K. Hoomod
{"title":"Task Scheduling in a Cloud Environment Based on Meta-Heuristic Approaches: A Survey","authors":"D. R. Abdulrazzaq, N. M. Shati, Haider K. Hoomod","doi":"10.24996/ijs.2024.65.2.33","DOIUrl":null,"url":null,"abstract":"     Cloud computing is one of the emerging technologies that expands the boundaries of the internet by using centralized servers to maintain data and resources. It allows users and consumers to use various applications provided by the cloud provider, but one of the major issues is task scheduling. Task scheduling is employed for the purpose of mapping the requests of users to the appropriate resources available. This paper provides a detailed survey of the available scheduling techniques for cloud environments based on six common metaheuristic  algorithms. Those algorithms are the Cuckoo Search Algorithm (CSA), Chicken Swarm Optimization (CSO), Genetic Algorithm (GA), Bat Algorithm (BA), Whale Optimization Algorithm (WOA), and Grey Wolf Optimization (GWO). The literature is analyzed from three perspectives: task type, objectives to be optimized, simulation environment, and quality of service performance metrics. In addition, the research gaps and future directions for future investigation are presented.","PeriodicalId":14698,"journal":{"name":"Iraqi Journal of Science","volume":"22 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iraqi Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24996/ijs.2024.65.2.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

     Cloud computing is one of the emerging technologies that expands the boundaries of the internet by using centralized servers to maintain data and resources. It allows users and consumers to use various applications provided by the cloud provider, but one of the major issues is task scheduling. Task scheduling is employed for the purpose of mapping the requests of users to the appropriate resources available. This paper provides a detailed survey of the available scheduling techniques for cloud environments based on six common metaheuristic  algorithms. Those algorithms are the Cuckoo Search Algorithm (CSA), Chicken Swarm Optimization (CSO), Genetic Algorithm (GA), Bat Algorithm (BA), Whale Optimization Algorithm (WOA), and Grey Wolf Optimization (GWO). The literature is analyzed from three perspectives: task type, objectives to be optimized, simulation environment, and quality of service performance metrics. In addition, the research gaps and future directions for future investigation are presented.
基于元亨利方法的云环境任务调度:调查
云计算是新兴技术之一,它通过使用集中式服务器来维护数据和资源,从而扩展了互联网的边界。它允许用户和消费者使用云提供商提供的各种应用程序,但其中一个主要问题是任务调度。采用任务调度的目的是将用户的请求映射到适当的可用资源上。本文以六种常见的元启发式算法为基础,详细介绍了适用于云环境的可用调度技术。这些算法包括布谷鸟搜索算法(CSA)、鸡群优化算法(CSO)、遗传算法(GA)、蝙蝠算法(BA)、鲸鱼优化算法(WOA)和灰狼优化算法(GWO)。本文从任务类型、优化目标、仿真环境和服务质量性能指标三个方面对文献进行了分析。此外,还介绍了研究空白和未来研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Iraqi Journal of Science
Iraqi Journal of Science Chemistry-Chemistry (all)
CiteScore
1.50
自引率
0.00%
发文量
241
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信