Crossing Numbers of the Cartesian Product of the Double Triangular Snake Graphs With Path Pm.

Pathak Manojkumar Vijaynath, Dr. Nithya Sai Narayana
{"title":"Crossing Numbers of the Cartesian Product of the Double Triangular Snake Graphs With Path Pm.","authors":"Pathak Manojkumar Vijaynath, Dr. Nithya Sai Narayana","doi":"10.53555/jaz.v44is8.4099","DOIUrl":null,"url":null,"abstract":"The crossing number Cr(G) of a graph G is the least number of edge crossings in all possible good drawings of G in the plane. Join and Cartesian products of graphs have many interesting graph-theoretical properties. In this paper, we evaluate the crossing number of the Cartesian product of double triangular snake graph DT2 with the path Pm. In this paper, we proved Cr(DT2 × Pm) = 6(m − 2), form ≥ 2 where Cr denotes the crossing number","PeriodicalId":509303,"journal":{"name":"Journal of Advanced Zoology","volume":"95 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Zoology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53555/jaz.v44is8.4099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The crossing number Cr(G) of a graph G is the least number of edge crossings in all possible good drawings of G in the plane. Join and Cartesian products of graphs have many interesting graph-theoretical properties. In this paper, we evaluate the crossing number of the Cartesian product of double triangular snake graph DT2 with the path Pm. In this paper, we proved Cr(DT2 × Pm) = 6(m − 2), form ≥ 2 where Cr denotes the crossing number
有路径 Pm 的双三角形蛇形图笛卡儿积的交叉数
图形 G 的交叉数 Cr(G) 是图形 G 在平面上所有可能的好图中最少的边交叉数。图的连接和笛卡尔积具有许多有趣的图论性质。在本文中,我们评估了双三角蛇形图 DT2 与路径 Pm 的笛卡尔积的交叉数。本文证明了 Cr(DT2 × Pm) = 6(m - 2), form ≥ 2,其中 Cr 表示交叉数
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信