ДОСЛІДЖЕННЯ ЕФЕКТИВНОСТІ ПАРАЛЕЛЬНОЇ ОБЧИСЛЮВАЛЬНОЇ СХЕМИ ІДЕНТИФІКАЦІЇ ІНТЕРВАЛЬНИХ ДИСКРЕТНИХ МОДЕЛЕЙ НА ОСНОВІ РОЙОВОГО ІНТЕЛЕКТУ

Микола Дивак, Олександр Кіндзерський
{"title":"ДОСЛІДЖЕННЯ ЕФЕКТИВНОСТІ ПАРАЛЕЛЬНОЇ ОБЧИСЛЮВАЛЬНОЇ СХЕМИ ІДЕНТИФІКАЦІЇ ІНТЕРВАЛЬНИХ ДИСКРЕТНИХ МОДЕЛЕЙ НА ОСНОВІ РОЙОВОГО ІНТЕЛЕКТУ","authors":"Микола Дивак, Олександр Кіндзерський","doi":"10.31891/2307-5732-2024-331-3","DOIUrl":null,"url":null,"abstract":"The research addressed in the paper focuses on organizing computations to solve NP-complex problems. Specifically, it examines the task of parametric identification of discrete models with distributed parameters based on the analysis of interval data. Computational algorithms inspired by the behavioral models of honeybee colonies are proposed to address this task. The application of the proposed algorithm enhances the efficiency of solving parametric identification problems for interval discrete models with distributed parameters, albeit with high computational time complexity. Therefore, the study suggests using parallel computing algorithms to reduce the time complexity. To assess the effectiveness of parallel computing in identifying interval discrete models with distributed parameters, computational experiments are proposed using examples of modeling air distribution and pollution by automotive exhaust emissions. \nThe computational experiments, based on behavioral models of honeybee colonies on a four-core processor, demonstrate increased efficiency in all experiments, with higher task complexity leading to greater parallelization efficiency. However, it is noted that the average number of generations required for the parallel algorithm to find a solution is significantly higher in some experiments compared to the sequential algorithm. This sensitivity indicates that the algorithm is highly influenced by the initially generated points in the solution search space. Overall, the study establishes the feasibility of parallelizing the computational scheme for solving parametric identification problems on other promising parallel architectures, such as graphical processors.","PeriodicalId":386560,"journal":{"name":"Herald of Khmelnytskyi National University. Technical sciences","volume":"10 23","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Herald of Khmelnytskyi National University. Technical sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31891/2307-5732-2024-331-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The research addressed in the paper focuses on organizing computations to solve NP-complex problems. Specifically, it examines the task of parametric identification of discrete models with distributed parameters based on the analysis of interval data. Computational algorithms inspired by the behavioral models of honeybee colonies are proposed to address this task. The application of the proposed algorithm enhances the efficiency of solving parametric identification problems for interval discrete models with distributed parameters, albeit with high computational time complexity. Therefore, the study suggests using parallel computing algorithms to reduce the time complexity. To assess the effectiveness of parallel computing in identifying interval discrete models with distributed parameters, computational experiments are proposed using examples of modeling air distribution and pollution by automotive exhaust emissions. The computational experiments, based on behavioral models of honeybee colonies on a four-core processor, demonstrate increased efficiency in all experiments, with higher task complexity leading to greater parallelization efficiency. However, it is noted that the average number of generations required for the parallel algorithm to find a solution is significantly higher in some experiments compared to the sequential algorithm. This sensitivity indicates that the algorithm is highly influenced by the initially generated points in the solution search space. Overall, the study establishes the feasibility of parallelizing the computational scheme for solving parametric identification problems on other promising parallel architectures, such as graphical processors.
研究基于群体智能的区间离散模型识别并行计算方案的效率
本文的研究重点是组织计算以解决 NP 复杂问题。具体来说,它研究了基于区间数据分析的分布参数离散模型的参数识别任务。受蜜蜂群行为模型的启发,提出了解决这一任务的计算算法。尽管计算时间复杂度较高,但应用所提出的算法提高了解决具有分布式参数的区间离散模型参数识别问题的效率。因此,研究建议使用并行计算算法来降低时间复杂度。为了评估并行计算在识别具有分布式参数的区间离散模型中的有效性,我们以空气分布和汽车尾气排放污染建模为例,提出了计算实验。计算实验基于四核处理器上的蜜蜂群行为模型,结果表明所有实验的效率都有所提高,任务复杂度越高,并行化效率越高。不过,值得注意的是,在某些实验中,并行算法找到解决方案所需的平均代数明显高于顺序算法。这种敏感性表明,该算法在很大程度上受到解搜索空间中最初生成点的影响。总之,这项研究确定了在图形处理器等其他有前途的并行架构上并行化解决参数识别问题的计算方案的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信