Mean Square Error Estimation of Small Area Predictors by Use of Parametric and Nonparametric Bootstrap

Danny Pfeffermann, Hagit Glickman, Arie Preminger
{"title":"Mean Square Error Estimation of Small Area Predictors by Use of Parametric and Nonparametric Bootstrap","authors":"Danny Pfeffermann, Hagit Glickman, Arie Preminger","doi":"10.1177/00080683231203823","DOIUrl":null,"url":null,"abstract":"In this article, we propose and compare some old and new parametric and nonparametric bootstrap methods for MSE estimation in small area estimation, restricting to the case of the widely used Fay-Herriot model. The parametric method consists of generating parametrically a large number of area bootstrap samples from the model fitted to the original data, re-estimating the model parameters for each bootstrap sample and then estimating the separate components of the MSE. The use of double-bootstrap is also considered. The nonparametric method generates the samples by bootstrapping standardized residuals, estimated from the original sample data. The bootstrap procedures are compared to other methods proposed in the literature in a simulation study, which also examines the robustness of the various methods to non-normality of the model error terms. A design-based MSE estimator for the Fay-Herriot model-dependent predictor is also described and its performance is investigated in a separate simulation study. AMS subject classification: 62F10, 62F40","PeriodicalId":396326,"journal":{"name":"Calcutta Statistical Association Bulletin","volume":"17 21","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calcutta Statistical Association Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00080683231203823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we propose and compare some old and new parametric and nonparametric bootstrap methods for MSE estimation in small area estimation, restricting to the case of the widely used Fay-Herriot model. The parametric method consists of generating parametrically a large number of area bootstrap samples from the model fitted to the original data, re-estimating the model parameters for each bootstrap sample and then estimating the separate components of the MSE. The use of double-bootstrap is also considered. The nonparametric method generates the samples by bootstrapping standardized residuals, estimated from the original sample data. The bootstrap procedures are compared to other methods proposed in the literature in a simulation study, which also examines the robustness of the various methods to non-normality of the model error terms. A design-based MSE estimator for the Fay-Herriot model-dependent predictor is also described and its performance is investigated in a separate simulation study. AMS subject classification: 62F10, 62F40
利用参数和非参数引导法估算小面积预测因子的均方误差
在本文中,我们以广泛使用的 Fay-Herriot 模型为例,提出并比较了一些用于小面积估算 MSE 估计的新旧参数和非参数自举方法。参数法包括从与原始数据拟合的模型中按参数生成大量面积自举样本,对每个自举样本重新估计模型参数,然后估计 MSE 的各个组成部分。此外,还考虑了双重自举法的使用。这种非参数方法通过对原始样本数据估计的标准化残差进行引导来生成样本。在模拟研究中,将自举程序与文献中提出的其他方法进行了比较,同时还检验了各种方法对模型误差项的非正态性的稳健性。此外,还介绍了基于设计的 Fay-Herriot 依赖模型预测器 MSE 估计器,并在另一项模拟研究中对其性能进行了调查。AMS 主题分类:62F10, 62F40
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信