Analisis Sentimen Ulasan Rumah Makan Menggunakan Perbandingan Algoritma Support Vector Machine dengan Naive bayes (Studi Kasus: Ayam Goreng Nelongso Cabang Singosari, Malang)

Dinar Fairus Salsabillah, D. Ratnawati, N. Setiawan
{"title":"Analisis Sentimen Ulasan Rumah Makan Menggunakan Perbandingan Algoritma Support Vector Machine dengan Naive bayes (Studi Kasus: Ayam Goreng Nelongso Cabang Singosari, Malang)","authors":"Dinar Fairus Salsabillah, D. Ratnawati, N. Setiawan","doi":"10.25126/jtiik.20241117584","DOIUrl":null,"url":null,"abstract":"Peningkatan kualitas produk dan pelayanan merupakan tantangan yang dihadapi oleh bisnis kuliner, termasuk rumah makan Ayam Goreng Nelongso Singosari di Kabupaten Malang. Analisis sentimen digunakan untuk mengidentifikasi ulasan pelanggan terkait pelayanan, kualitas produk, harga, dan kepuasan pelanggan. Penelitian ini membandingkan metode Support Vector Machine (SVM), metode Naïve Bayes Classifier (NBC), dan Root Cause Analysis untuk mengklasifikasikan sentimen ulasan pelanggan dan menganalisis masalah yang mendasarinya. Tujuan penelitian ini adalah membandingkan hasil dari algoritma Support Vector Machine dan Naïve Bayes Classifier dalam pengklasifikasian sentimen ulasan pelanggan rumah makan Ayam Goreng Nelongso. Penelitian ini juga bertujuan untuk menghasilkan rekomendasi berdasarkan analisis root cause pada sentimen negatif ulasan pelanggan. Implementasi kedua algoritma klasifikasi menunjukkan performa yang baik dalam mengklasifikasikan data dengan akurasi tinggi. Pengujian menunjukkan bahwa kinerja SVM lebih unggul dengan tingkat akurasi mencapai 92,74%, sementara NBC mencapai tingkat akurasi sebesar 91,67%. Hasil analisis root cause menunjukkan beberapa rekomendasi untuk meningkatkan aspek harga, makanan, layanan, dan tempat rumah makan. Rekomendasi yang dapat dilakukan oleh pihak rumah makan diantaranya adalah evaluasi ukuran dan harga, penggunaan deep frying, pelatihan dan evaluasi pelayanan, serta penambahan tenaga kerja atau kerjasama dengan outsourcing dalam menjaga kebersihan tempat. Hasil penelitian diharapkan dapat membantu pemilik rumah makan dalam mengembangkan kualitas produk dan pelayanan serta memberikan pandangan untuk langkahlangkah yang dapat diambil di kemudian hari. ","PeriodicalId":32501,"journal":{"name":"Jurnal Teknologi Informasi dan Ilmu Komputer","volume":"18 16","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi Informasi dan Ilmu Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25126/jtiik.20241117584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Peningkatan kualitas produk dan pelayanan merupakan tantangan yang dihadapi oleh bisnis kuliner, termasuk rumah makan Ayam Goreng Nelongso Singosari di Kabupaten Malang. Analisis sentimen digunakan untuk mengidentifikasi ulasan pelanggan terkait pelayanan, kualitas produk, harga, dan kepuasan pelanggan. Penelitian ini membandingkan metode Support Vector Machine (SVM), metode Naïve Bayes Classifier (NBC), dan Root Cause Analysis untuk mengklasifikasikan sentimen ulasan pelanggan dan menganalisis masalah yang mendasarinya. Tujuan penelitian ini adalah membandingkan hasil dari algoritma Support Vector Machine dan Naïve Bayes Classifier dalam pengklasifikasian sentimen ulasan pelanggan rumah makan Ayam Goreng Nelongso. Penelitian ini juga bertujuan untuk menghasilkan rekomendasi berdasarkan analisis root cause pada sentimen negatif ulasan pelanggan. Implementasi kedua algoritma klasifikasi menunjukkan performa yang baik dalam mengklasifikasikan data dengan akurasi tinggi. Pengujian menunjukkan bahwa kinerja SVM lebih unggul dengan tingkat akurasi mencapai 92,74%, sementara NBC mencapai tingkat akurasi sebesar 91,67%. Hasil analisis root cause menunjukkan beberapa rekomendasi untuk meningkatkan aspek harga, makanan, layanan, dan tempat rumah makan. Rekomendasi yang dapat dilakukan oleh pihak rumah makan diantaranya adalah evaluasi ukuran dan harga, penggunaan deep frying, pelatihan dan evaluasi pelayanan, serta penambahan tenaga kerja atau kerjasama dengan outsourcing dalam menjaga kebersihan tempat. Hasil penelitian diharapkan dapat membantu pemilik rumah makan dalam mengembangkan kualitas produk dan pelayanan serta memberikan pandangan untuk langkahlangkah yang dapat diambil di kemudian hari. 
使用支持向量机算法与 Naive Bayes 算法对餐厅评论进行情感分析(案例研究:马兰 Ayam Goreng Nelongso Singosari 分店)
提高产品和服务质量是包括马朗地区 Ayam Goreng Nelongso Singosari 餐厅在内的烹饪企业所面临的一项挑战。情感分析用于识别与服务、产品质量、价格和客户满意度相关的客户评论。本研究比较了支持向量机(SVM)、奈夫贝叶斯分类器(NBC)和根源分析方法,以对客户评论进行情感分类并分析潜在问题。本研究的目的是比较支持向量机和奈伊夫贝叶斯分类器算法在对 Ayam Goreng Nelongso 餐厅的顾客评论进行情感分类时的结果。这项研究还旨在根据对顾客评论负面情绪的根本原因分析提出建议。两种分类算法的实施都显示出在对数据进行高精度分类方面的良好性能。测试表明,SVM 的准确率为 92.74%,而 NBC 的准确率为 91.67%,表现更胜一筹。根本原因分析结果显示了一些改善餐厅价格、菜品、服务和场所方面的建议。餐厅可以提出的建议包括:评估规模和价格、使用油炸、培训和评估服务、增加劳动力或与外包合作保持场所清洁。研究结果有望帮助餐厅业主提高产品和服务质量,并为今后可采取的措施提供启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信