Evaluation and Performance Testing of Eccentric Rolling Isolation System

IF 4.6 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Cho-Yen Yang, Dan Chiao, Yong-An Lai, Chia-Ming Chang, Lap-Loi Chung
{"title":"Evaluation and Performance Testing of Eccentric Rolling Isolation System","authors":"Cho-Yen Yang,&nbsp;Dan Chiao,&nbsp;Yong-An Lai,&nbsp;Chia-Ming Chang,&nbsp;Lap-Loi Chung","doi":"10.1155/2024/8845965","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Seismic isolation has become a widely accepted method for the protection of structures and nonstructural components. However, this control strategy is unfavorable against near-fault earthquakes, particularly those featuring velocity-pulse effects. Excessive isolation displacements and accelerations can occur during such earthquakes, resulting in amplified responses of the superstructure. To resolve this problem, this study develops a prototype of the eccentric rolling isolation system consisting of one platform eccentrically pin-connected to four circular rollers. The eccentric pin connection yields a nonlinear restoring force of the proposed system and results in displacement-dependent resonances, and the inherent mechanical friction also yields an energy dissipation capability of the system. As the magnitude of ground excitation increases, the prototype system generates a lower resonant frequency away from the dominant frequencies of earthquakes. This behavior is experimentally investigated and verified for mechanical behavior and seismic performance. In the experiment, sinusoidal, far-field, and near-fault ground motions are considered in shaking table testing. Some parameters, such as the eccentricity, roller size, and inertial force, are also experimentally investigated. As found in the experimental result, the feasibility of the prototype system is successfully verified. Meanwhile, the comparable simulation results further validate the mathematical model of the prototype system. Consequently, the eccentric rolling isolation system has demonstrated isolation effectiveness against far-field ground motions and has good potential to perform better than a linear system under near-fault ground motions.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2024 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/8845965","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/8845965","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Seismic isolation has become a widely accepted method for the protection of structures and nonstructural components. However, this control strategy is unfavorable against near-fault earthquakes, particularly those featuring velocity-pulse effects. Excessive isolation displacements and accelerations can occur during such earthquakes, resulting in amplified responses of the superstructure. To resolve this problem, this study develops a prototype of the eccentric rolling isolation system consisting of one platform eccentrically pin-connected to four circular rollers. The eccentric pin connection yields a nonlinear restoring force of the proposed system and results in displacement-dependent resonances, and the inherent mechanical friction also yields an energy dissipation capability of the system. As the magnitude of ground excitation increases, the prototype system generates a lower resonant frequency away from the dominant frequencies of earthquakes. This behavior is experimentally investigated and verified for mechanical behavior and seismic performance. In the experiment, sinusoidal, far-field, and near-fault ground motions are considered in shaking table testing. Some parameters, such as the eccentricity, roller size, and inertial force, are also experimentally investigated. As found in the experimental result, the feasibility of the prototype system is successfully verified. Meanwhile, the comparable simulation results further validate the mathematical model of the prototype system. Consequently, the eccentric rolling isolation system has demonstrated isolation effectiveness against far-field ground motions and has good potential to perform better than a linear system under near-fault ground motions.

Abstract Image

偏心滚动隔离系统的评估和性能测试
隔震已成为一种广为接受的保护结构和非结构部件的方法。然而,这种控制策略不利于近断层地震,尤其是具有速度脉冲效应的地震。在这种地震中,会出现过大的隔离位移和加速度,导致上部结构的响应放大。为解决这一问题,本研究开发了一种偏心滚动隔震系统原型,该系统由一个平台和四个圆形滚轮偏心销连接而成。偏心销连接产生了系统的非线性恢复力,并导致了与位移相关的共振,同时系统固有的机械摩擦也产生了能量消耗能力。随着地面激振力的增大,原型系统会产生较低的共振频率,远离地震的主要频率。实验对这种行为进行了研究,并验证了其机械行为和抗震性能。实验中,振动台测试考虑了正弦、远场和近断层地面运动。此外,还对偏心率、滚筒尺寸和惯性力等参数进行了实验研究。实验结果表明,原型系统的可行性得到了成功验证。同时,可比的仿真结果进一步验证了原型系统的数学模型。因此,偏心滚动隔震系统对远场地动具有隔震效果,并且在近断层地动下具有比线性系统更好的隔震性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Structural Control & Health Monitoring
Structural Control & Health Monitoring 工程技术-工程:土木
CiteScore
9.50
自引率
13.00%
发文量
234
审稿时长
8 months
期刊介绍: The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications. Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics. Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信