Optimizing Enterprise AI Adoption with Converged Infrastructure: The Role of NVIDIA AI Enterprise and VMware in Streamlining IT Stack and Enhancing Resource Allocation

Sriram Sagi
{"title":"Optimizing Enterprise AI Adoption with Converged Infrastructure: The Role of NVIDIA AI Enterprise and VMware in Streamlining IT Stack and Enhancing Resource Allocation","authors":"Sriram Sagi","doi":"10.47363/jaicc/2024(3)214","DOIUrl":null,"url":null,"abstract":"This research paper, titled \"Streamlining IT Stack and Enhancing Resource Allocation; The Role of NVIDIA AI Enterprise and VMware\" explores the benefits of combining NVIDIA AI Enterprise and VMware technologies to optimize IT infrastructure in businesses. By integrating these technologies organizations can effectively. Scale their AI initiatives focusing on innovation and extracting insights, from data. The paper highlights the importance of a integrated infrastructure, for hosting large scale language models and discusses how converged infrastructure eliminates the complexities associated with hardware and software. It emphasizes how this collaboration ensures performance, scalability, security and cost effectiveness enabling enterprises to leverage the potential of AI. To demonstrate the effectiveness of this approach the research includes testing with Cisco and NetApp converged infrastructure to deploy and manage AI models successfully. Ultimately this study showcases how businesses can gain an edge in todays evolving AI landscape.","PeriodicalId":407351,"journal":{"name":"Journal of Artificial Intelligence & Cloud Computing","volume":"92 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence & Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47363/jaicc/2024(3)214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research paper, titled "Streamlining IT Stack and Enhancing Resource Allocation; The Role of NVIDIA AI Enterprise and VMware" explores the benefits of combining NVIDIA AI Enterprise and VMware technologies to optimize IT infrastructure in businesses. By integrating these technologies organizations can effectively. Scale their AI initiatives focusing on innovation and extracting insights, from data. The paper highlights the importance of a integrated infrastructure, for hosting large scale language models and discusses how converged infrastructure eliminates the complexities associated with hardware and software. It emphasizes how this collaboration ensures performance, scalability, security and cost effectiveness enabling enterprises to leverage the potential of AI. To demonstrate the effectiveness of this approach the research includes testing with Cisco and NetApp converged infrastructure to deploy and manage AI models successfully. Ultimately this study showcases how businesses can gain an edge in todays evolving AI landscape.
利用融合基础架构优化企业人工智能应用:英伟达™(NVIDIA®)AI Enterprise 和 VMware 在简化 IT 堆栈和增强资源分配方面的作用
本研究论文的题目是 "精简 IT 堆栈和加强资源分配;英伟达™ AI Enterprise 和 VMware 的作用",探讨了结合英伟达™ AI Enterprise 和 VMware 技术优化企业 IT 基础架构的好处。通过整合这些技术,企业可以有效地扩展其人工智能计划,重点关注创新和从数据中提取洞察力。本文强调了集成基础架构对于托管大型语言模型的重要性,并讨论了融合基础架构如何消除与硬件和软件相关的复杂性。它强调了这种合作如何确保性能、可扩展性、安全性和成本效益,使企业能够充分利用人工智能的潜力。为了证明这种方法的有效性,研究包括使用思科和 NetApp 融合基础架构进行测试,以成功部署和管理人工智能模型。本研究最终展示了企业如何在当今不断发展的人工智能领域获得优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信