Maximum likelihood sequence estimation in high-speed PONs using machine learning-based pre-equalizers

Wouter Lanneer, Yannick Lefevre
{"title":"Maximum likelihood sequence estimation in high-speed PONs using machine learning-based pre-equalizers","authors":"Wouter Lanneer,&nbsp;Yannick Lefevre","doi":"10.1016/j.sctalk.2024.100341","DOIUrl":null,"url":null,"abstract":"<div><p>High-speed passive optical networks (PONs) use advanced signal processing techniques like inter-symbol interference (ISI) equalization. While equalizers based on maximum likelihood sequence estimation (MLSE) via the Viterbi algorithm achieve excellent performance, they suffer from excessive implementation complexity except for very short channel responses. In this work, we employ a pre-equalizer for joint “channel shortening” and branch metric computation needed for the Viterbi algorithm. We then propose an optimization method for iteratively updating the pre-equalizer towards optimal end-to-end MLSE performance, by minimizing the multi-class cross-entropy loss based upon the path metrics. Numerical evaluations demonstrate that our proposed solution for MLSE with a small number of taps achieves significant ISI equalization improvements with respect to prior art approaches, and a performance close to MLSE with a high number of taps.</p></div>","PeriodicalId":101148,"journal":{"name":"Science Talks","volume":"10 ","pages":"Article 100341"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772569324000495/pdfft?md5=573b5433b3ab065364757a5eee62e5d0&pid=1-s2.0-S2772569324000495-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Talks","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772569324000495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

High-speed passive optical networks (PONs) use advanced signal processing techniques like inter-symbol interference (ISI) equalization. While equalizers based on maximum likelihood sequence estimation (MLSE) via the Viterbi algorithm achieve excellent performance, they suffer from excessive implementation complexity except for very short channel responses. In this work, we employ a pre-equalizer for joint “channel shortening” and branch metric computation needed for the Viterbi algorithm. We then propose an optimization method for iteratively updating the pre-equalizer towards optimal end-to-end MLSE performance, by minimizing the multi-class cross-entropy loss based upon the path metrics. Numerical evaluations demonstrate that our proposed solution for MLSE with a small number of taps achieves significant ISI equalization improvements with respect to prior art approaches, and a performance close to MLSE with a high number of taps.

利用基于机器学习的预均衡器在高速 PON 中进行最大似然序列估计
高速无源光网络(PON)使用先进的信号处理技术,如符号间干扰(ISI)均衡。虽然基于最大似然序列估计(MLSE)的均衡器通过 Viterbi 算法实现了出色的性能,但除了极短的信道响应外,它们都存在执行复杂度过高的问题。在这项工作中,我们采用了一种预均衡器,用于联合 "信道缩短 "和维特比算法所需的分支度量计算。然后,我们提出了一种优化方法,通过基于路径度量最小化多类交叉熵损失,迭代更新预均衡器,以实现最佳端到端 MLSE 性能。数值评估结果表明,与现有方法相比,我们提出的采用少量分路的 MLSE 解决方案显著改善了 ISI 均衡,性能接近采用大量分路的 MLSE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信