Large-scale dose evaluation of deep learning organ contours in head-and-neck radiotherapy by leveraging existing plans

IF 3.4 Q2 ONCOLOGY
Prerak Mody , Merle Huiskes , Nicolas F. Chaves-de-Plaza , Alice Onderwater , Rense Lamsma , Klaus Hildebrandt , Nienke Hoekstra , Eleftheria Astreinidou , Marius Staring , Frank Dankers
{"title":"Large-scale dose evaluation of deep learning organ contours in head-and-neck radiotherapy by leveraging existing plans","authors":"Prerak Mody ,&nbsp;Merle Huiskes ,&nbsp;Nicolas F. Chaves-de-Plaza ,&nbsp;Alice Onderwater ,&nbsp;Rense Lamsma ,&nbsp;Klaus Hildebrandt ,&nbsp;Nienke Hoekstra ,&nbsp;Eleftheria Astreinidou ,&nbsp;Marius Staring ,&nbsp;Frank Dankers","doi":"10.1016/j.phro.2024.100572","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and purpose</h3><p>Retrospective dose evaluation for organ-at-risk auto-contours has previously used small cohorts due to additional manual effort required for treatment planning on auto-contours. We aimed to do this at large scale, by a) proposing and assessing an automated plan optimization workflow that used existing clinical plan parameters and b) using it for head-and-neck auto-contour dose evaluation.</p></div><div><h3>Materials and methods</h3><p>Our automated workflow emulated our clinic’s treatment planning protocol and reused existing clinical plan optimization parameters. This workflow recreated the original clinical plan (<span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>OG</mi></mrow></msub></mrow></math></span>) with manual contours (<span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>MC</mi></mrow></msub></mrow></math></span>) and evaluated the dose effect (<span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>OG</mi></mrow></msub><mo>-</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>MC</mi></mrow></msub></mrow></math></span>) on 70 photon and 30 proton plans of head-and-neck patients. As a use-case, the same workflow (and parameters) created a plan using auto-contours (<span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>AC</mi></mrow></msub></mrow></math></span>) of eight head-and-neck organs-at-risk from a commercial tool and evaluated their dose effect (<span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>MC</mi></mrow></msub><mo>-</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>AC</mi></mrow></msub></mrow></math></span>).</p></div><div><h3>Results</h3><p>For plan recreation (<span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>OG</mi></mrow></msub><mo>-</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>MC</mi></mrow></msub></mrow></math></span>), our workflow had a median impact of 1.0% and 1.5% across dose metrics of auto-contours, for photon and proton respectively. Computer time of automated planning was 25% (photon) and 42% (proton) of manual planning time. For auto-contour evaluation (<span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>MC</mi></mrow></msub><mo>-</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>AC</mi></mrow></msub></mrow></math></span>), we noticed an impact of 2.0% and 2.6% for photon and proton radiotherapy. All evaluations had a median <span><math><mrow><mi>Δ</mi></mrow></math></span>NTCP (Normal Tissue Complication Probability) less than 0.3%.</p></div><div><h3>Conclusions</h3><p>The plan replication capability of our automated program provides a blueprint for other clinics to perform auto-contour dose evaluation with large patient cohorts. Finally, despite geometric differences, auto-contours had a minimal median dose impact, hence inspiring confidence in their utility and facilitating their clinical adoption.</p></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405631624000423/pdfft?md5=f7fecc1633d5c42a78b43fb87cb878ea&pid=1-s2.0-S2405631624000423-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405631624000423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background and purpose

Retrospective dose evaluation for organ-at-risk auto-contours has previously used small cohorts due to additional manual effort required for treatment planning on auto-contours. We aimed to do this at large scale, by a) proposing and assessing an automated plan optimization workflow that used existing clinical plan parameters and b) using it for head-and-neck auto-contour dose evaluation.

Materials and methods

Our automated workflow emulated our clinic’s treatment planning protocol and reused existing clinical plan optimization parameters. This workflow recreated the original clinical plan (POG) with manual contours (PMC) and evaluated the dose effect (POG-PMC) on 70 photon and 30 proton plans of head-and-neck patients. As a use-case, the same workflow (and parameters) created a plan using auto-contours (PAC) of eight head-and-neck organs-at-risk from a commercial tool and evaluated their dose effect (PMC-PAC).

Results

For plan recreation (POG-PMC), our workflow had a median impact of 1.0% and 1.5% across dose metrics of auto-contours, for photon and proton respectively. Computer time of automated planning was 25% (photon) and 42% (proton) of manual planning time. For auto-contour evaluation (PMC-PAC), we noticed an impact of 2.0% and 2.6% for photon and proton radiotherapy. All evaluations had a median ΔNTCP (Normal Tissue Complication Probability) less than 0.3%.

Conclusions

The plan replication capability of our automated program provides a blueprint for other clinics to perform auto-contour dose evaluation with large patient cohorts. Finally, despite geometric differences, auto-contours had a minimal median dose impact, hence inspiring confidence in their utility and facilitating their clinical adoption.

Abstract Image

利用现有计划对头颈部放疗中深度学习器官轮廓进行大规模剂量评估
背景和目的由于对自动轮廓进行治疗规划需要额外的人工操作,因此对有器官风险的自动轮廓进行的前瞻性剂量评估以前一直使用小规模队列。我们的目标是:a)提出并评估使用现有临床计划参数的自动计划优化工作流程;b)将其用于头颈部自动轮廓剂量评估。该工作流程用手动轮廓(PMC)重新创建了原始临床计划(POG),并对头颈部患者的 70 个光子计划和 30 个质子计划进行了剂量效应(POG-PMC)评估。结果对于计划再造(POG-PMC),我们的工作流程对光子和质子自动轮廓的剂量指标的影响中值分别为 1.0% 和 1.5%。自动规划的计算机时间是人工规划时间的 25%(光子)和 42%(质子)。对于自动轮廓评估(PMC-PAC),我们注意到光子和质子放疗的影响分别为 2.0% 和 2.6%。所有评估的中位数ΔNTCP(正常组织并发症概率)均小于 0.3%。结论我们的自动程序的计划复制能力为其他诊所提供了一个蓝图,使其能够对大型患者群进行自动轮廓剂量评估。最后,尽管存在几何差异,但自动轮廓对中位剂量的影响极小,这使人们对其效用充满信心,并促进了其在临床上的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics and Imaging in Radiation Oncology
Physics and Imaging in Radiation Oncology Physics and Astronomy-Radiation
CiteScore
5.30
自引率
18.90%
发文量
93
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信