Wasserstein distance loss function for financial time series deep learning

IF 1.3 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Hugo Gobato Souto, Amir Moradi
{"title":"Wasserstein distance loss function for financial time series deep learning","authors":"Hugo Gobato Souto,&nbsp;Amir Moradi","doi":"10.1016/j.simpa.2024.100639","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents user-friendly code for the implementation of a loss function for neural network time series models that exploits the topological structures of financial data. By leveraging the recently-discovered presence of topological features present in financial time series data, the code offers a more effective approach for creating forecasting models for such data given the fact that it allows neural network models to not only learn temporal patterns of the data, but also topological patterns. This paper aims to facilitate the adoption of the loss function proposed by Souto and Moradi (2024a) in financial time series by practitioners and researchers.</p></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"20 ","pages":"Article 100639"},"PeriodicalIF":1.3000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665963824000277/pdfft?md5=eb86aef4201b8909e13d426764a1aa6a&pid=1-s2.0-S2665963824000277-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Impacts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665963824000277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents user-friendly code for the implementation of a loss function for neural network time series models that exploits the topological structures of financial data. By leveraging the recently-discovered presence of topological features present in financial time series data, the code offers a more effective approach for creating forecasting models for such data given the fact that it allows neural network models to not only learn temporal patterns of the data, but also topological patterns. This paper aims to facilitate the adoption of the loss function proposed by Souto and Moradi (2024a) in financial time series by practitioners and researchers.

用于金融时间序列深度学习的瓦瑟斯坦距离损失函数
本文介绍了利用金融数据拓扑结构为神经网络时间序列模型实现损失函数的用户友好型代码。通过利用最近发现的金融时间序列数据中存在的拓扑特征,该代码为创建此类数据的预测模型提供了一种更有效的方法,因为它允许神经网络模型不仅学习数据的时间模式,还学习拓扑模式。本文旨在促进从业人员和研究人员在金融时间序列中采用 Souto 和 Moradi(2024a)提出的损失函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Software Impacts
Software Impacts Software
CiteScore
2.70
自引率
9.50%
发文量
0
审稿时长
16 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信