Denoising point clouds with fewer learnable parameters

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Huankun Sheng , Ying Li
{"title":"Denoising point clouds with fewer learnable parameters","authors":"Huankun Sheng ,&nbsp;Ying Li","doi":"10.1016/j.cad.2024.103708","DOIUrl":null,"url":null,"abstract":"<div><p>Point cloud denoising is a crucial task in the field of geometric processing. Recent years have witnessed significant advancements in deep learning-based point cloud denoising algorithms. These methods, compared to traditional techniques, demonstrate enhanced robustness against noise and produce point cloud data of higher fidelity. Despite their impressive performance, achieving a balance between denoising efficacy and computational efficiency remains a formidable challenge in learning-based methods. To solve this problem, we introduce LPCDNet, a novel lightweight point cloud denoising network. LPCDNet consists of three main components: a lightweight feature extraction module utilizing trigonometric functions for relative position encoding; a non-parametric feature aggregation module to leverage semantic similarities for global context comprehension; and a decoder module designed to realign noise points with the underlying surface. The network is designed to capture both local details and non-local structures, thereby ensuring high-quality denoising outcomes with a minimal parameter count. Extensive experimental evaluations demonstrate that LPCDNet achieves comparable or superior performance to state-of-the-art methods, while significantly reducing the number of learnable parameters and the necessary running time.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010448524000356","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Point cloud denoising is a crucial task in the field of geometric processing. Recent years have witnessed significant advancements in deep learning-based point cloud denoising algorithms. These methods, compared to traditional techniques, demonstrate enhanced robustness against noise and produce point cloud data of higher fidelity. Despite their impressive performance, achieving a balance between denoising efficacy and computational efficiency remains a formidable challenge in learning-based methods. To solve this problem, we introduce LPCDNet, a novel lightweight point cloud denoising network. LPCDNet consists of three main components: a lightweight feature extraction module utilizing trigonometric functions for relative position encoding; a non-parametric feature aggregation module to leverage semantic similarities for global context comprehension; and a decoder module designed to realign noise points with the underlying surface. The network is designed to capture both local details and non-local structures, thereby ensuring high-quality denoising outcomes with a minimal parameter count. Extensive experimental evaluations demonstrate that LPCDNet achieves comparable or superior performance to state-of-the-art methods, while significantly reducing the number of learnable parameters and the necessary running time.

用更少的可学习参数对点云进行去噪
点云去噪是几何处理领域的一项重要任务。近年来,基于深度学习的点云去噪算法取得了重大进展。与传统技术相比,这些方法具有更强的抗噪能力,并能生成保真度更高的点云数据。尽管这些方法的性能令人印象深刻,但在去噪效果和计算效率之间实现平衡仍然是基于学习的方法所面临的巨大挑战。为了解决这个问题,我们引入了一种新型轻量级点云去噪网络 LPCDNet。LPCDNet 由三个主要部分组成:利用三角函数进行相对位置编码的轻量级特征提取模块;利用语义相似性进行全局上下文理解的非参数特征聚合模块;以及旨在将噪声点与底层表面重新对齐的解码器模块。该网络旨在捕捉局部细节和非局部结构,从而确保以最小的参数数量实现高质量的去噪结果。广泛的实验评估表明,LPCDNet 的性能可与最先进的方法相媲美,甚至更胜一筹,同时显著减少了可学习参数的数量和必要的运行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信