Spectroscopic evaluation of epidermis-equivalent phantom in terahertz-frequency region

IF 1.6 4区 地球科学 Q3 ASTRONOMY & ASTROPHYSICS
Radio Science Pub Date : 2024-03-01 DOI:10.1029/2023RS007809
Maya Mizuno;Shota Yamazaki;Tomoaki Nagaoka
{"title":"Spectroscopic evaluation of epidermis-equivalent phantom in terahertz-frequency region","authors":"Maya Mizuno;Shota Yamazaki;Tomoaki Nagaoka","doi":"10.1029/2023RS007809","DOIUrl":null,"url":null,"abstract":"The complex refractive index and reflectance of an epidermis-equivalent phantom were evaluated in the terahertz-frequency region. The complex refractive indices of the epidermis and the epidermis-equivalent phantom, made using ultrapure water, mineral oil, glycerin fatty acid ester, and agar, were measured using a terahertz time-domain spectrometer. The complex refractive indices of the epidermis and the epidermis-equivalent phantom were in agreement. However, their mean reflectances had a difference of approximately 3%. The difference disappeared on adding surface roughness to the epidermis-equivalent phantom. Thus, we found that roughness of the surface of the epidermis-equivalent phantom was required to ensure a match of the reflectance of the phantom with that of the epidermis at frequencies from 0.2 THz to 0.6 THz.","PeriodicalId":49638,"journal":{"name":"Radio Science","volume":"59 3","pages":"1-6"},"PeriodicalIF":1.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radio Science","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10495847/","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The complex refractive index and reflectance of an epidermis-equivalent phantom were evaluated in the terahertz-frequency region. The complex refractive indices of the epidermis and the epidermis-equivalent phantom, made using ultrapure water, mineral oil, glycerin fatty acid ester, and agar, were measured using a terahertz time-domain spectrometer. The complex refractive indices of the epidermis and the epidermis-equivalent phantom were in agreement. However, their mean reflectances had a difference of approximately 3%. The difference disappeared on adding surface roughness to the epidermis-equivalent phantom. Thus, we found that roughness of the surface of the epidermis-equivalent phantom was required to ensure a match of the reflectance of the phantom with that of the epidermis at frequencies from 0.2 THz to 0.6 THz.
太赫兹频率区域表皮等效模型的光谱评估
在太赫兹频率区域评估了表皮等效模型的复折射率和反射率。使用太赫兹时域光谱仪测量了使用超纯水、矿物油、甘油脂肪酸酯和琼脂制作的表皮和表皮等效模型的复折射率。表皮和表皮等效模型的复折射率一致。然而,它们的平均反射率相差约 3%。在表皮等效模型中加入表面粗糙度后,差异消失了。因此,我们发现表皮等效模型表面的粗糙度是确保在 0.2 THz 至 0.6 THz 频率范围内模型反射率与表皮反射率相匹配的必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Radio Science
Radio Science 工程技术-地球化学与地球物理
CiteScore
3.30
自引率
12.50%
发文量
112
审稿时长
1 months
期刊介绍: Radio Science (RDS) publishes original scientific contributions on radio-frequency electromagnetic-propagation and its applications. Contributions covering measurement, modelling, prediction and forecasting techniques pertinent to fields and waves - including antennas, signals and systems, the terrestrial and space environment and radio propagation problems in radio astronomy - are welcome. Contributions may address propagation through, interaction with, and remote sensing of structures, geophysical media, plasmas, and materials, as well as the application of radio frequency electromagnetic techniques to remote sensing of the Earth and other bodies in the solar system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信