Leveraging Prompt-Based Large Language Models: Predicting Pandemic Health Decisions and Outcomes Through Social Media Language

ArXiv Pub Date : 2024-03-01 DOI:10.1145/3613904.3642117
Xi Ding, Buse Çarik, U. Gunturi, Valerie Reyna, Eugenia H. Rho
{"title":"Leveraging Prompt-Based Large Language Models: Predicting Pandemic Health Decisions and Outcomes Through Social Media Language","authors":"Xi Ding, Buse Çarik, U. Gunturi, Valerie Reyna, Eugenia H. Rho","doi":"10.1145/3613904.3642117","DOIUrl":null,"url":null,"abstract":"We introduce a multi-step reasoning framework using prompt-based LLMs to examine the relationship between social media language patterns and trends in national health outcomes. Grounded in fuzzy-trace theory, which emphasizes the importance of gists of causal coherence in effective health communication, we introduce Role-Based Incremental Coaching (RBIC), a prompt-based LLM framework, to identify gists at-scale. Using RBIC, we systematically extract gists from subreddit discussions opposing COVID-19 health measures (Study 1). We then track how these gists evolve across key events (Study 2) and assess their influence on online engagement (Study 3). Finally, we investigate how the volume of gists is associated with national health trends like vaccine uptake and hospitalizations (Study 4). Our work is the first to empirically link social media linguistic patterns to real-world public health trends, highlighting the potential of prompt-based LLMs in identifying critical online discussion patterns that can form the basis of public health communication strategies.","PeriodicalId":513202,"journal":{"name":"ArXiv","volume":"40 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3613904.3642117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a multi-step reasoning framework using prompt-based LLMs to examine the relationship between social media language patterns and trends in national health outcomes. Grounded in fuzzy-trace theory, which emphasizes the importance of gists of causal coherence in effective health communication, we introduce Role-Based Incremental Coaching (RBIC), a prompt-based LLM framework, to identify gists at-scale. Using RBIC, we systematically extract gists from subreddit discussions opposing COVID-19 health measures (Study 1). We then track how these gists evolve across key events (Study 2) and assess their influence on online engagement (Study 3). Finally, we investigate how the volume of gists is associated with national health trends like vaccine uptake and hospitalizations (Study 4). Our work is the first to empirically link social media linguistic patterns to real-world public health trends, highlighting the potential of prompt-based LLMs in identifying critical online discussion patterns that can form the basis of public health communication strategies.
利用基于提示的大型语言模型:通过社交媒体语言预测大流行病的健康决策和结果
我们引入了一个多步骤推理框架,使用基于提示的 LLMs 来研究社交媒体语言模式与国民健康结果趋势之间的关系。模糊踪迹理论强调了因果一致性要点在有效健康传播中的重要性,我们以该理论为基础,引入了基于角色的增量辅导(RBIC)--一种基于提示的 LLM 框架--来大规模识别要点。利用 RBIC,我们系统地从反对 COVID-19 健康措施的 subreddit 讨论中提取要点(研究 1)。然后,我们跟踪这些要点如何在关键事件中演变(研究 2),并评估它们对在线参与的影响(研究 3)。最后,我们还调查了 gists 的数量与疫苗接种率和住院率等国民健康趋势之间的关联(研究 4)。我们的研究首次将社交媒体语言模式与现实世界的公共卫生趋势联系起来,凸显了基于提示的 LLM 在识别关键在线讨论模式方面的潜力,而这些讨论模式可以成为公共卫生传播策略的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信