What do neural networks listen to? Exploring the crucial bands in Speech Enhancement using Sinc-convolution

Kuan-Hsun Ho, J. Hung, Berlin Chen
{"title":"What do neural networks listen to? Exploring the crucial bands in Speech Enhancement using Sinc-convolution","authors":"Kuan-Hsun Ho, J. Hung, Berlin Chen","doi":"10.1109/icassp48485.2024.10445878","DOIUrl":null,"url":null,"abstract":"This study introduces a reformed Sinc-convolution (Sincconv) framework tailored for the encoder component of deep networks for speech enhancement (SE). The reformed Sincconv, based on parametrized sinc functions as band-pass filters, offers notable advantages in terms of training efficiency, filter diversity, and interpretability. The reformed Sinc-conv is evaluated in conjunction with various SE models, showcasing its ability to boost SE performance. Furthermore, the reformed Sincconv provides valuable insights into the specific frequency components that are prioritized in an SE scenario. This opens up a new direction of SE research and improving our knowledge of their operating dynamics.","PeriodicalId":513202,"journal":{"name":"ArXiv","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icassp48485.2024.10445878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a reformed Sinc-convolution (Sincconv) framework tailored for the encoder component of deep networks for speech enhancement (SE). The reformed Sincconv, based on parametrized sinc functions as band-pass filters, offers notable advantages in terms of training efficiency, filter diversity, and interpretability. The reformed Sinc-conv is evaluated in conjunction with various SE models, showcasing its ability to boost SE performance. Furthermore, the reformed Sincconv provides valuable insights into the specific frequency components that are prioritized in an SE scenario. This opens up a new direction of SE research and improving our knowledge of their operating dynamics.
神经网络听什么?利用 Sinc-convolution 探索语音增强中的关键频段
本研究介绍了一种为语音增强(SE)深度网络编码器组件量身定制的改革 Sinc-卷积(Sincconv)框架。改革后的 Sincconv 基于参数化 sinc 函数作为带通滤波器,在训练效率、滤波器多样性和可解释性方面具有显著优势。改革后的 Sincconv 结合各种 SE 模型进行了评估,展示了其提高 SE 性能的能力。此外,改革后的 Sincconv 对 SE 场景中优先考虑的特定频率成分提供了有价值的见解。这开辟了 SE 研究的新方向,并提高了我们对其运行动态的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信