Wolfgang Paier, Paul Hinzer, A. Hilsmann, P. Eisert
{"title":"Video-Driven Animation of Neural Head Avatars","authors":"Wolfgang Paier, Paul Hinzer, A. Hilsmann, P. Eisert","doi":"10.2312/vmv.20231237","DOIUrl":null,"url":null,"abstract":"We present a new approach for video-driven animation of high-quality neural 3D head models, addressing the challenge of person-independent animation from video input. Typically, high-quality generative models are learned for specific individuals from multi-view video footage, resulting in person-specific latent representations that drive the generation process. In order to achieve person-independent animation from video input, we introduce an LSTM-based animation network capable of translating person-independent expression features into personalized animation parameters of person-specific 3D head models. Our approach combines the advantages of personalized head models (high quality and realism) with the convenience of video-driven animation employing multi-person facial performance capture. We demonstrate the effectiveness of our approach on synthesized animations with high quality based on different source videos as well as an ablation study.","PeriodicalId":513202,"journal":{"name":"ArXiv","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/vmv.20231237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We present a new approach for video-driven animation of high-quality neural 3D head models, addressing the challenge of person-independent animation from video input. Typically, high-quality generative models are learned for specific individuals from multi-view video footage, resulting in person-specific latent representations that drive the generation process. In order to achieve person-independent animation from video input, we introduce an LSTM-based animation network capable of translating person-independent expression features into personalized animation parameters of person-specific 3D head models. Our approach combines the advantages of personalized head models (high quality and realism) with the convenience of video-driven animation employing multi-person facial performance capture. We demonstrate the effectiveness of our approach on synthesized animations with high quality based on different source videos as well as an ablation study.