A Systematic Overview of Fuzzy Extended Entity Relationship (Fuzzy EER) Model Using Practical Examples

Ekle Francis A., Dr. Okoronkwo Matthew C., Musa Ibrahim A., Akosu Aondohemba M.
{"title":"A Systematic Overview of Fuzzy Extended Entity Relationship (Fuzzy EER) Model Using Practical Examples","authors":"Ekle Francis A., Dr. Okoronkwo Matthew C., Musa Ibrahim A., Akosu Aondohemba M.","doi":"10.24940/ijird/2023/v12/i12/sep23010","DOIUrl":null,"url":null,"abstract":"Most real-world data are vague and imprecise, so traditional relational databases cannot represent, integrate, and manage them effectively. In this research, we gave an overview of the application of fuzzy logic to the conceptual modeling facet of database design, which is an enhancement of the Extended Entity Relationship (EER) model. This is done to give a clearer picture of how imprecise and vague data are represented and managed, especially in multiple-criteria decision-making database systems. To achieve this, an overview of fuzzy attributes, fuzzy values in the attributes, notation for fuzzy representations, fuzzy degree in each value of an attribute, fuzzy degree in a set of values of different attributes, fuzzy degree with its own meaning and fuzzy degree to the model was carried out with practical examples.","PeriodicalId":503137,"journal":{"name":"International Journal of Innovative Research and Development","volume":"32 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Innovative Research and Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24940/ijird/2023/v12/i12/sep23010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Most real-world data are vague and imprecise, so traditional relational databases cannot represent, integrate, and manage them effectively. In this research, we gave an overview of the application of fuzzy logic to the conceptual modeling facet of database design, which is an enhancement of the Extended Entity Relationship (EER) model. This is done to give a clearer picture of how imprecise and vague data are represented and managed, especially in multiple-criteria decision-making database systems. To achieve this, an overview of fuzzy attributes, fuzzy values in the attributes, notation for fuzzy representations, fuzzy degree in each value of an attribute, fuzzy degree in a set of values of different attributes, fuzzy degree with its own meaning and fuzzy degree to the model was carried out with practical examples.
利用实例系统概述模糊扩展实体关系(Fuzzy EER)模型
现实世界中的大多数数据都是模糊而不精确的,因此传统的关系数据库无法有效地表示、整合和管理这些数据。在这项研究中,我们概述了模糊逻辑在数据库设计的概念建模方面的应用,这是对扩展实体关系(EER)模型的增强。这样做是为了更清楚地说明如何表示和管理不精确和模糊的数据,特别是在多标准决策数据库系统中。为此,结合实例概述了模糊属性、属性中的模糊值、模糊表示符号、属性中每个值的模糊度、不同属性值集合中的模糊度、具有自身含义的模糊度以及模型的模糊度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信