Considering Nonstationary within Multivariate Time Series with Variational Hierarchical Transformer for Forecasting

ArXiv Pub Date : 2024-03-08 DOI:10.1609/aaai.v38i14.29483
Muyao Wang, Wenchao Chen, Bo Chen
{"title":"Considering Nonstationary within Multivariate Time Series with Variational Hierarchical Transformer for Forecasting","authors":"Muyao Wang, Wenchao Chen, Bo Chen","doi":"10.1609/aaai.v38i14.29483","DOIUrl":null,"url":null,"abstract":"The forecasting of Multivariate Time Series (MTS) has long been an important but challenging task. Due to the non-stationary problem across long-distance time steps, previous studies primarily adopt stationarization method to attenuate the non-stationary problem of original series for better predictability. However, existed methods always adopt the stationarized series, which ignore the inherent non-stationarity, and have difficulty in modeling MTS with complex distributions due to the lack of stochasticity. To tackle these problems, we first develop a powerful hierarchical probabilistic generative module to consider the non-stationarity and stochastity characteristics within MTS, and then combine it with transformer for a well-defined variational generative dynamic model named Hierarchical Time series Variational Transformer (HTV-Trans), which recovers the intrinsic non-stationary information into temporal dependencies. Being an powerful probabilistic model, HTV-Trans is utilized to learn expressive representations of MTS and applied to the forecasting tasks. Extensive experiments on diverse datasets show the efficiency of HTV-Trans on MTS forecasting tasks.","PeriodicalId":513202,"journal":{"name":"ArXiv","volume":"6 19","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aaai.v38i14.29483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The forecasting of Multivariate Time Series (MTS) has long been an important but challenging task. Due to the non-stationary problem across long-distance time steps, previous studies primarily adopt stationarization method to attenuate the non-stationary problem of original series for better predictability. However, existed methods always adopt the stationarized series, which ignore the inherent non-stationarity, and have difficulty in modeling MTS with complex distributions due to the lack of stochasticity. To tackle these problems, we first develop a powerful hierarchical probabilistic generative module to consider the non-stationarity and stochastity characteristics within MTS, and then combine it with transformer for a well-defined variational generative dynamic model named Hierarchical Time series Variational Transformer (HTV-Trans), which recovers the intrinsic non-stationary information into temporal dependencies. Being an powerful probabilistic model, HTV-Trans is utilized to learn expressive representations of MTS and applied to the forecasting tasks. Extensive experiments on diverse datasets show the efficiency of HTV-Trans on MTS forecasting tasks.
利用变分层次变换器考虑多变量时间序列中的非平稳性以进行预测
长期以来,多变量时间序列(MTS)预测一直是一项重要而又具有挑战性的任务。由于存在跨长距离时间步长的非平稳性问题,以往的研究主要采用平稳化方法来削弱原始序列的非平稳性问题,以获得更好的可预测性。然而,现有方法总是采用静止化序列,忽略了固有的非平稳性,而且由于缺乏随机性,难以对具有复杂分布的 MTS 进行建模。为了解决这些问题,我们首先开发了一个功能强大的分层概率生成模块,以考虑 MTS 的非平稳性和随机性特征,然后将其与变换器相结合,建立了一个定义明确的变异生成动态模型,命名为分层时间序列变异变换器(HTV-Trans),将内在的非平稳信息复原为时间依赖关系。作为一个强大的概率模型,HTV-Trans 被用来学习 MTS 的表达式表示,并应用于预测任务。在不同数据集上进行的大量实验表明,HTV-Trans 在 MTS 预测任务中非常有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信