Experimental research on mechanical, material, and metallurgical properties of Inconel 600: Application in elevated temperature environment

Arash Moradi, Siamak Ghorbani, Mahmoud Chizari
{"title":"Experimental research on mechanical, material, and metallurgical properties of Inconel 600: Application in elevated temperature environment","authors":"Arash Moradi, Siamak Ghorbani, Mahmoud Chizari","doi":"10.62676/jdaf.2024.2.1.30","DOIUrl":null,"url":null,"abstract":"Du to high strength and toughness, high oxidation resistance, and high ductility, the Inconel 600 alloy is an ideal choice for the components used in combined heat and power turbines. Therefore, in this paper, the authors conducted experimental tests to better underestand the mechanical behavior of superalloys Inconel 600. The experiments included tensile, fatigue, and creep tests. The material deformation and stress-strain behavior were measured. In addition the yield strength, ultimate tensile strength, elongation, and modulus of elasticity were captured. By illustrating the engineering and true stress-strain curves the Ramberg-Osgood relation were extracted. As a result of fatigue test, the relationship between strain amplitude and the number of cycles to failure for specimens were obtained. The creep tests were conducted at a constant temperature of 650℃. The strain-time data were collected, and the resulting creep strain-time curve were plotted for smooth samples under their respective stress conditions.\n \nREFERENCES\n\nG. Becerra, M.R.B. Alvarez, V.H.L Morelos, A. Ruiz. Creep behavior and microstructural characterization of Inconel-625/Inconel-600 welded joint. MRS Adv. 8, (2023) 1217–1223, https://doi.org/10.1557/s43580-023-00662-7.\nBaig, S.H.I. Jaffery, M.A. Khan, M. Alruqi, Statistical analysis of surface roughness, burr formation and tool wear in high speed micro milling of Inconel 600 alloy under cryogenic, wet and dry conditions. Micromachines 14(1) 2023, 13. https://doi.org/10.3390/mi14010013.\nNanaware, S. Pawar, M. Ramachandran. Mechanical characterization of nickel alloys on turbine blades. REST J.E.M.M., 1(1) (2015), 15–19.\nD. Kwon, D.K. Park, S.W. Woo, D.H. Yoon, I. Chung. A study on fretting fatigue life for the Inconel alloy 600 at high temperature. Nucl. Eng. Des. 240 (2010) 2521–2527. https://doi.org/10.1016/j.nucengdes.2010.05.013.\nGajalappa, A. Krishnaiah, K.B. Kumar, Eswaranna, K.K. Saxena, P. Goyal. Flow behaviour kinetics of Inconel 600 superalloy under hot deformation using gleeble 3800. Mater. Today: Proc. 45 (2021) 5320–5322. https://doi.org/10.1016/j.matpr.2021.01.909.\nY. Wu, P.H. Sun, F.J. Zhu, S.C. Wang, W.R. Wang, C.C. Wang, C.H. Chiu. Tensile flow behavior in Inconel 600 alloy sheet at elevated temperatures. Procedia Eng. 36 (2012) 114–120. https://doi.org/10.1016/j.proeng.2012.03.018.\nXu, S. Wang, X. Tang, Y. Li, J. Yang, J. Li, Y. Zhang. Corrosion mechanism of Inconel 600 in oxidizing supercritical aqueous systems containing multiple salts. Eng. Chem. Res. 58(51) (2019) 23046–23056. https://doi.org/10.1021/acs.iecr.9b04527.\nS. Al-Rubaie, L.B. Godefroid, J.A.M. Lopes. Statistical modeling of fatigue crack growth rate in Inconel alloy 600. Int. J. Fatigue 29 (2007) 931–940. https://doi.org/10.1016/j.ijfatigue.2006.07.013.\nY. Wu, F.J. Zhu, S.C. Wang, W.R. Wang, C.C. Wang, C.H. Chiu. Hot deformation characteristics and strain-dependent constitutive analysis of Inconel 600 superalloy. J. Mater. Sci. 47 (2012) 3971–3981. https://doi.org/10.1007/s10853-012-6250-4.\nA. Khafri, N. Golarzi. Forming behavior and workability of Hastelloy X superalloy during hot deformation. Mater. Sci. Eng. A 486 (2008) 641–647. https://dx.doi.org/10.1016/j.msea.2007.11.059.\nT.W.K. Fahmi, K.R. Kashyzadeh, S. Ghorbani. A comprehensive review on mechanical failures cause vibration in the gas turbine of combined cycle power plants. Engineering Failure Analysis 134 (2022) 106094.‏ https://doi.org/10.1016/j.engfailanal.2022.106094.\nJ. Li, K.L. Lin. Strengthening of Inconel 600 alloy with electric current stressing. MTLA 27 (2023) 101666.\n\nhttps://doi.org/10.1016/j.mtla.2022.101666.\n\nT. Kim, Y.S. Kim. The effect of the static load in the UNSM process on the corrosion properties of alloy 600. Materials 12 (2019) 3165. https://doi.org/10.3390/ma12193165.\nKuzmanov, B. Borisov, I. Muhtarov. Tensile testing of Inconel 600 wire at high temperatures. IOP Conf. Ser.: Mater. Sci. Eng. 878 (2020) 012057.https://doi.org/10.1088/1757-899X/878/1/012057.\nV.C.S. Rao, A. Manoj, B.R. Swathi. Residual stress measurement of Inconel 600 on different welding techniques by using conventional and XRD methods. Mater. Today: Proc. 41 (2021) 1160–1163. https://doi.org/10.1016/j.matpr.2020.09.403.\nReza Kashyzadeh, G.H. Farrahi, A. Ahmadi, M. Minaei, M. Ostad Rahimi, S. Barforoushan. Fatigue life analysis in the residual stress field due to resistance spot welding process considering different sheet thicknesses and dissimilar electrode geometries. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. 237(1) (2023) 33-51. ‏ https://doi.org/10.1177/14644207221101069.\nA. Monteiro, S.L.V. Silva, L.V. Silva, A.H.P. Andrade, L.C.E. Silva. Characterization of nickel alloy 600 with ultra-fine structure processed by severe plastic deformation technique (SPD). J. Mater. Sci. Chem. Eng. 5 (2017) 33–44. https://doi.org/10.4236/msce.2017.54004.\nYi, G.S. Was. Stress and temperature dependence of creep in alloy 600 in primary water. Metall. Mater. Trans. A 32, (2001) 2553–2560. https://doi.org/10.1007/s11661-001-0045-6ю\nKarthik, S. Swaroop. Laser shock peening enhanced corrosion properties in a nickel based nconel 600 superalloy. J. Alloys Compd. 694 (2017) 1309–1319. https://doi.org/10.1016/j.jallcom.2016.10.093.\nMakuch, M. Kulka. Microstructural characterization and some mechanical properties of gas-borided Inconel 600-alloy. Appl. Surf. Sci., 314 (2014) 1007–1018. https://doi.org/10.1016/j.apsusc.2014.06.109.\nASTM E8-04: Standard Test Methods for Tension Testing of Metallic Materials, ASTM, https://doi.org/10.1520/E0008-04.\nASTM E466-21: Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials, ASTM, https://doi.org/10.1520/E0466-21.\nP. Skelton. H.J. Maier, H.J. Christ. The Bauschinger effect, Masing model and the Ramberg– Osgood relation for cyclic deformation in metals. Mater. Sci. Eng. A, 238 (1997) 377–390. https://doi.org/10.1016/S0921-5093(97)00465-6.\nNiesłony, C. Dsoki, H. Kaufmann, P. Krug. New method for evaluation of the Manson–Coffin–Basquin and Ramberg– Osgood equations with respect to compatibility. Int. J. Fatigue 30 (2008) 1967–1977. https://doi.org/10.1016/j.ijfatigue.2008.01.012.\nWeixing, X. Kaiquan, G. Yi. On the fatigue notch factor, Kf. Int. J. Fatigue 17(4) (1995) 245–251. https://doi.org/10.1016/0142-1123(95)93538-D.\nE. Dowling. Mechanical behavior of materials, engineering methods for deformation, fracture, and fatigue. fourth ed., Pearson, 2013.\nZhang. C. Zhang, S. Mu, S. Wang, H. Li. Characterization of mechanical properties of in-service nickel-based alloy by continuous indentation. Structures 48 (2023) 1346–1355. https://doi.org/10.1016/j.istruc.2023.01.053.\n","PeriodicalId":517750,"journal":{"name":"Journal of Design Against Fatigue","volume":" 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Design Against Fatigue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.62676/jdaf.2024.2.1.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Du to high strength and toughness, high oxidation resistance, and high ductility, the Inconel 600 alloy is an ideal choice for the components used in combined heat and power turbines. Therefore, in this paper, the authors conducted experimental tests to better underestand the mechanical behavior of superalloys Inconel 600. The experiments included tensile, fatigue, and creep tests. The material deformation and stress-strain behavior were measured. In addition the yield strength, ultimate tensile strength, elongation, and modulus of elasticity were captured. By illustrating the engineering and true stress-strain curves the Ramberg-Osgood relation were extracted. As a result of fatigue test, the relationship between strain amplitude and the number of cycles to failure for specimens were obtained. The creep tests were conducted at a constant temperature of 650℃. The strain-time data were collected, and the resulting creep strain-time curve were plotted for smooth samples under their respective stress conditions.   REFERENCES G. Becerra, M.R.B. Alvarez, V.H.L Morelos, A. Ruiz. Creep behavior and microstructural characterization of Inconel-625/Inconel-600 welded joint. MRS Adv. 8, (2023) 1217–1223, https://doi.org/10.1557/s43580-023-00662-7. Baig, S.H.I. Jaffery, M.A. Khan, M. Alruqi, Statistical analysis of surface roughness, burr formation and tool wear in high speed micro milling of Inconel 600 alloy under cryogenic, wet and dry conditions. Micromachines 14(1) 2023, 13. https://doi.org/10.3390/mi14010013. Nanaware, S. Pawar, M. Ramachandran. Mechanical characterization of nickel alloys on turbine blades. REST J.E.M.M., 1(1) (2015), 15–19. D. Kwon, D.K. Park, S.W. Woo, D.H. Yoon, I. Chung. A study on fretting fatigue life for the Inconel alloy 600 at high temperature. Nucl. Eng. Des. 240 (2010) 2521–2527. https://doi.org/10.1016/j.nucengdes.2010.05.013. Gajalappa, A. Krishnaiah, K.B. Kumar, Eswaranna, K.K. Saxena, P. Goyal. Flow behaviour kinetics of Inconel 600 superalloy under hot deformation using gleeble 3800. Mater. Today: Proc. 45 (2021) 5320–5322. https://doi.org/10.1016/j.matpr.2021.01.909. Y. Wu, P.H. Sun, F.J. Zhu, S.C. Wang, W.R. Wang, C.C. Wang, C.H. Chiu. Tensile flow behavior in Inconel 600 alloy sheet at elevated temperatures. Procedia Eng. 36 (2012) 114–120. https://doi.org/10.1016/j.proeng.2012.03.018. Xu, S. Wang, X. Tang, Y. Li, J. Yang, J. Li, Y. Zhang. Corrosion mechanism of Inconel 600 in oxidizing supercritical aqueous systems containing multiple salts. Eng. Chem. Res. 58(51) (2019) 23046–23056. https://doi.org/10.1021/acs.iecr.9b04527. S. Al-Rubaie, L.B. Godefroid, J.A.M. Lopes. Statistical modeling of fatigue crack growth rate in Inconel alloy 600. Int. J. Fatigue 29 (2007) 931–940. https://doi.org/10.1016/j.ijfatigue.2006.07.013. Y. Wu, F.J. Zhu, S.C. Wang, W.R. Wang, C.C. Wang, C.H. Chiu. Hot deformation characteristics and strain-dependent constitutive analysis of Inconel 600 superalloy. J. Mater. Sci. 47 (2012) 3971–3981. https://doi.org/10.1007/s10853-012-6250-4. A. Khafri, N. Golarzi. Forming behavior and workability of Hastelloy X superalloy during hot deformation. Mater. Sci. Eng. A 486 (2008) 641–647. https://dx.doi.org/10.1016/j.msea.2007.11.059. T.W.K. Fahmi, K.R. Kashyzadeh, S. Ghorbani. A comprehensive review on mechanical failures cause vibration in the gas turbine of combined cycle power plants. Engineering Failure Analysis 134 (2022) 106094.‏ https://doi.org/10.1016/j.engfailanal.2022.106094. J. Li, K.L. Lin. Strengthening of Inconel 600 alloy with electric current stressing. MTLA 27 (2023) 101666. https://doi.org/10.1016/j.mtla.2022.101666. T. Kim, Y.S. Kim. The effect of the static load in the UNSM process on the corrosion properties of alloy 600. Materials 12 (2019) 3165. https://doi.org/10.3390/ma12193165. Kuzmanov, B. Borisov, I. Muhtarov. Tensile testing of Inconel 600 wire at high temperatures. IOP Conf. Ser.: Mater. Sci. Eng. 878 (2020) 012057.https://doi.org/10.1088/1757-899X/878/1/012057. V.C.S. Rao, A. Manoj, B.R. Swathi. Residual stress measurement of Inconel 600 on different welding techniques by using conventional and XRD methods. Mater. Today: Proc. 41 (2021) 1160–1163. https://doi.org/10.1016/j.matpr.2020.09.403. Reza Kashyzadeh, G.H. Farrahi, A. Ahmadi, M. Minaei, M. Ostad Rahimi, S. Barforoushan. Fatigue life analysis in the residual stress field due to resistance spot welding process considering different sheet thicknesses and dissimilar electrode geometries. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. 237(1) (2023) 33-51. ‏ https://doi.org/10.1177/14644207221101069. A. Monteiro, S.L.V. Silva, L.V. Silva, A.H.P. Andrade, L.C.E. Silva. Characterization of nickel alloy 600 with ultra-fine structure processed by severe plastic deformation technique (SPD). J. Mater. Sci. Chem. Eng. 5 (2017) 33–44. https://doi.org/10.4236/msce.2017.54004. Yi, G.S. Was. Stress and temperature dependence of creep in alloy 600 in primary water. Metall. Mater. Trans. A 32, (2001) 2553–2560. https://doi.org/10.1007/s11661-001-0045-6ю Karthik, S. Swaroop. Laser shock peening enhanced corrosion properties in a nickel based nconel 600 superalloy. J. Alloys Compd. 694 (2017) 1309–1319. https://doi.org/10.1016/j.jallcom.2016.10.093. Makuch, M. Kulka. Microstructural characterization and some mechanical properties of gas-borided Inconel 600-alloy. Appl. Surf. Sci., 314 (2014) 1007–1018. https://doi.org/10.1016/j.apsusc.2014.06.109. ASTM E8-04: Standard Test Methods for Tension Testing of Metallic Materials, ASTM, https://doi.org/10.1520/E0008-04. ASTM E466-21: Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials, ASTM, https://doi.org/10.1520/E0466-21. P. Skelton. H.J. Maier, H.J. Christ. The Bauschinger effect, Masing model and the Ramberg– Osgood relation for cyclic deformation in metals. Mater. Sci. Eng. A, 238 (1997) 377–390. https://doi.org/10.1016/S0921-5093(97)00465-6. Niesłony, C. Dsoki, H. Kaufmann, P. Krug. New method for evaluation of the Manson–Coffin–Basquin and Ramberg– Osgood equations with respect to compatibility. Int. J. Fatigue 30 (2008) 1967–1977. https://doi.org/10.1016/j.ijfatigue.2008.01.012. Weixing, X. Kaiquan, G. Yi. On the fatigue notch factor, Kf. Int. J. Fatigue 17(4) (1995) 245–251. https://doi.org/10.1016/0142-1123(95)93538-D. E. Dowling. Mechanical behavior of materials, engineering methods for deformation, fracture, and fatigue. fourth ed., Pearson, 2013. Zhang. C. Zhang, S. Mu, S. Wang, H. Li. Characterization of mechanical properties of in-service nickel-based alloy by continuous indentation. Structures 48 (2023) 1346–1355. https://doi.org/10.1016/j.istruc.2023.01.053.
铬镍铁合金 600 的机械、材料和冶金性能实验研究:在高温环境中的应用
合金 600 在原水中蠕变的应力和温度依赖性。Metall.Mater.A 32, (2001) 2553-2560.https://doi.org/10.1007/s11661-001-0045-6юKarthik, S. Swaroop.激光冲击强化增强镍基 nconel 600 超级合金的腐蚀性能。J. Alloys Compd.694 (2017) 1309-1319. https://doi.org/10.1016/j.jallcom.2016.10.093.Makuch, M. Kulka.气体硼化物 Inconel 600 合金的微结构表征和某些力学性能。Appl.Sci.,314 (2014) 1007-1018。https://doi.org/10.1016/j.apsusc.2014.06.109.ASTM E8-04:金属材料拉力测试的标准测试方法》,ASTM, https://doi.org/10.1520/E0008-04.ASTM E466-21:金属材料传导力控制恒幅轴向疲劳试验标准方法》,ASTM, https://doi.org/10.1520/E0466-21.P. Skelton.H.J. Maier, H.J. Christ.金属循环变形的 Bauschinger 效应、Masing 模型和 Ramberg- Osgood 关系。Mater.Mater.https://doi.org/10.1016/S0921-5093(97)00465-6.Niesłony, C. Dsoki, H. Kaufmann, P. Krug.关于兼容性的 Manson-Coffin-Basquin 和 Ramberg- Osgood 方程评估新方法.Int. J. Fatigue 30 (2008).https://doi.org/10.1016/j.ijfatigue.2008.01.012.Weixing, X. Kaiquan, G. Yi.关于疲劳缺口因子 Kf。Int. J. Fatigue 17(4).J. Fatigue 17(4) (1995) 245-251. https://doi.org/10.1016/0142-1123(95)93538-D.E. Dowling.材料力学行为,变形、断裂和疲劳的工程方法》,第四版,Pearson,2013.Zhang.C. Zhang, S. Mu, S. Wang, H. Li.用连续压痕法表征在役镍基合金的力学性能。结构 48 (2023) 1346-1355。https://doi.org/10.1016/j.istruc.2023.01.053.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信