{"title":"Exponential dichotomy and invariant manifolds of semi-linear differential equations on the line","authors":"Viet Duoc Trinh, Huy Nguyen Ngoc","doi":"10.24193/subbmath.2024.1.09","DOIUrl":null,"url":null,"abstract":"In this paper we investigate the homogeneous linear differential equation vi(t) = A(t)v(t) and the semi-linear differential equation vi(t) = A(t)v(t) + g(t, v(t)) in Banach space X, in which A : R → L(X) is a strongly continuous function, g : R × X → X is continuous and satisfies ϕ-Lipschitz condition. The first we characterize the exponential dichotomy of the associated evolution family with the homogeneous linear differential equation by space pair (E, E∞), this is a Perron type result. Applying the achieved results, we establish the robustness of exponential dichotomy. The next we show the existence of stable and unstable manifolds for the semi-linear differential equation and prove that each a fiber of these manifolds is differentiable submanifold of class C1.\nMathematics Subject Classification (2010): 34C45, 34D09, 34D10.\nReceived 14 June 2021; Accepted 09 September 2022","PeriodicalId":517948,"journal":{"name":"Studia Universitatis Babes-Bolyai Matematica","volume":" 94","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Universitatis Babes-Bolyai Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/subbmath.2024.1.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we investigate the homogeneous linear differential equation vi(t) = A(t)v(t) and the semi-linear differential equation vi(t) = A(t)v(t) + g(t, v(t)) in Banach space X, in which A : R → L(X) is a strongly continuous function, g : R × X → X is continuous and satisfies ϕ-Lipschitz condition. The first we characterize the exponential dichotomy of the associated evolution family with the homogeneous linear differential equation by space pair (E, E∞), this is a Perron type result. Applying the achieved results, we establish the robustness of exponential dichotomy. The next we show the existence of stable and unstable manifolds for the semi-linear differential equation and prove that each a fiber of these manifolds is differentiable submanifold of class C1.
Mathematics Subject Classification (2010): 34C45, 34D09, 34D10.
Received 14 June 2021; Accepted 09 September 2022