A parallel approach for ultra-fast state estimation in large power system using graph partitioning theory

Q3 Engineering
Behnam Karim Sarmadi, Ahmad Salehi Dobakhshari
{"title":"A parallel approach for ultra-fast state estimation in large power system using graph partitioning theory","authors":"Behnam Karim Sarmadi, Ahmad Salehi Dobakhshari","doi":"10.21014/actaimeko.v13i1.1704","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel approach for multi-area state estimation in large transmission networks through the application of graph partitioning theory. By harnessing the eigenvalues and eigenvectors of the Laplacian matrix, a large-scale transmission network is partitioned into manageable sections. Within these partitions, state estimation processes run in parallel, markedly improving efficiency compared to conventional methods. Linear state estimation is employed within each area, expediting computations and making it adaptable to large-scale networks, which traditionally pose computational challenges. The method's efficacy is demonstrated through comprehensive validation, commencing with small networks and extending to real-world applications on the IEEE 118-bus test system and the 9241-bus European high-voltage transmission network. In comparison to the integrated network method, our approach has achieved state estimation answers with reduced computation time. The partitioning of the integrated network into multi areas has effectively mitigated computational loads, showcasing its potential for enhancing operational efficiency and reliability in complex power transmission systems. This approach not only offers a robust solution for state estimation but also represents a significant stride toward advancing the field of state estimation, promising to bolster the stability and performance of modern power grids.","PeriodicalId":37987,"journal":{"name":"Acta IMEKO","volume":" 80","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta IMEKO","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21014/actaimeko.v13i1.1704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

This paper introduces a novel approach for multi-area state estimation in large transmission networks through the application of graph partitioning theory. By harnessing the eigenvalues and eigenvectors of the Laplacian matrix, a large-scale transmission network is partitioned into manageable sections. Within these partitions, state estimation processes run in parallel, markedly improving efficiency compared to conventional methods. Linear state estimation is employed within each area, expediting computations and making it adaptable to large-scale networks, which traditionally pose computational challenges. The method's efficacy is demonstrated through comprehensive validation, commencing with small networks and extending to real-world applications on the IEEE 118-bus test system and the 9241-bus European high-voltage transmission network. In comparison to the integrated network method, our approach has achieved state estimation answers with reduced computation time. The partitioning of the integrated network into multi areas has effectively mitigated computational loads, showcasing its potential for enhancing operational efficiency and reliability in complex power transmission systems. This approach not only offers a robust solution for state estimation but also represents a significant stride toward advancing the field of state estimation, promising to bolster the stability and performance of modern power grids.
利用图划分理论实现大型电力系统超快状态估计的并行方法
本文介绍了一种应用图划分理论进行大型输电网络多区域状态估计的新方法。通过利用拉普拉斯矩阵的特征值和特征向量,大规模输电网络被分割成易于管理的部分。在这些分区内,状态估计过程并行运行,与传统方法相比,效率明显提高。每个区域内都采用线性状态估计,从而加快了计算速度,并使其适用于传统计算难题的大规模网络。从小型网络开始,到 IEEE 118 总线测试系统和 9241 总线欧洲高压输电网络的实际应用,该方法通过全面验证证明了其有效性。与集成网络方法相比,我们的方法在减少计算时间的情况下获得了状态估计答案。将集成网络划分为多个区域有效减轻了计算负荷,展示了该方法在提高复杂输电系统运行效率和可靠性方面的潜力。这种方法不仅为状态估计提供了一种稳健的解决方案,而且代表了状态估计领域的一大进步,有望提高现代电网的稳定性和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta IMEKO
Acta IMEKO Engineering-Mechanical Engineering
CiteScore
2.50
自引率
0.00%
发文量
75
期刊介绍: The main goal of this journal is the enhancement of academic activities of IMEKO and a wider dissemination of scientific output from IMEKO TC events. High-quality papers presented at IMEKO conferences, workshops or congresses are seleted by the event organizers and the authors are invited to publish an enhanced version of their paper in this journal. The journal also publishes scientific articles on measurement and instrumentation not related to an IMEKO event.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信