{"title":"Short review of current limits and challenges of application of machine learning algorithms in the dairy sector","authors":"Lucia Trapanese, Miel Hostens, Angela Salzano, Nicola Pasquino","doi":"10.21014/actaimeko.v13i1.1725","DOIUrl":null,"url":null,"abstract":"In the last years, the livestock sector is moving towards a more sustainable animal-based industry, mitigating the environmental impact of livestock while meeting the demand for high-quality food. To achieve these goals, farms are using a more technological approach, adopting algorithms to manipulate the vast amount of data from sensors and routine operations. The results will be useful for making more objective decisions. In this context, machine learning - a branch of Artificial Intelligence applied to the study of prediction, inference, and clustering algorithms - can be successfully employed. Nowadays, machine learning algorithms are successfully used to solve many issues in the livestock sector, such as early disease detection, and they are expected to be employed in the future for welfare monitoring. This brief review gives an overview of the current state of the art of the most popular applications for dairy science and the most widely used and best-performing algorithms, highlighting the challenges and obstacles for broad acceptance of these techniques in the dairy sector.","PeriodicalId":37987,"journal":{"name":"Acta IMEKO","volume":" 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta IMEKO","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21014/actaimeko.v13i1.1725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1
Abstract
In the last years, the livestock sector is moving towards a more sustainable animal-based industry, mitigating the environmental impact of livestock while meeting the demand for high-quality food. To achieve these goals, farms are using a more technological approach, adopting algorithms to manipulate the vast amount of data from sensors and routine operations. The results will be useful for making more objective decisions. In this context, machine learning - a branch of Artificial Intelligence applied to the study of prediction, inference, and clustering algorithms - can be successfully employed. Nowadays, machine learning algorithms are successfully used to solve many issues in the livestock sector, such as early disease detection, and they are expected to be employed in the future for welfare monitoring. This brief review gives an overview of the current state of the art of the most popular applications for dairy science and the most widely used and best-performing algorithms, highlighting the challenges and obstacles for broad acceptance of these techniques in the dairy sector.
期刊介绍:
The main goal of this journal is the enhancement of academic activities of IMEKO and a wider dissemination of scientific output from IMEKO TC events. High-quality papers presented at IMEKO conferences, workshops or congresses are seleted by the event organizers and the authors are invited to publish an enhanced version of their paper in this journal. The journal also publishes scientific articles on measurement and instrumentation not related to an IMEKO event.