Weakly Picard mappings: Retraction-displacement condition, quasicontraction notion and weakly Picard admissible perturbation

I. Rus
{"title":"Weakly Picard mappings: Retraction-displacement condition, quasicontraction notion and weakly Picard admissible perturbation","authors":"I. Rus","doi":"10.24193/subbmath.2024.1.13","DOIUrl":null,"url":null,"abstract":"Let (X, d) be a metric space, f : X → X be a mapping and G(·, f (·)) be an admissible perturbation of f. In this paper we study the following problems: In which conditions imposed on f and G we have the following:\n(DDE) data dependence estimate for the mapping f perturbation; \n(UH) Ulam-Hyers stability for the equation, x = f (x);\n(WP) well-posedness of the fixed-point problem for f; \n(OP) Ostrowski property of the mapping f.\nSome research directions are suggested.\nMathematics Subject Classification (2010): 47H25, 54H25, 47H09, 65J15, 37N30, 39A30.\nReceived 22 October 2023; Accepted 16 November 2023","PeriodicalId":517948,"journal":{"name":"Studia Universitatis Babes-Bolyai Matematica","volume":" 42","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Universitatis Babes-Bolyai Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/subbmath.2024.1.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 61

Abstract

Let (X, d) be a metric space, f : X → X be a mapping and G(·, f (·)) be an admissible perturbation of f. In this paper we study the following problems: In which conditions imposed on f and G we have the following: (DDE) data dependence estimate for the mapping f perturbation; (UH) Ulam-Hyers stability for the equation, x = f (x); (WP) well-posedness of the fixed-point problem for f; (OP) Ostrowski property of the mapping f. Some research directions are suggested. Mathematics Subject Classification (2010): 47H25, 54H25, 47H09, 65J15, 37N30, 39A30. Received 22 October 2023; Accepted 16 November 2023
弱皮卡映射:回缩-位移条件、准回缩概念和弱皮卡尔可容许扰动
假设 (X, d) 是一个度量空间,f : X → X 是一个映射,G(-, f (-)) 是 f 的可允许扰动:在对 f 和 G 施加的条件中,我们有以下条件:(DDE)映射 f 扰动的数据依赖性估计;(UH)方程 x = f (x) 的 Ulam-Hyers 稳定性;(WP)f 的定点问题的好求性;(OP)映射 f 的 Ostrowski 特性。提出了一些研究方向:47H25, 54H25, 47H09, 65J15, 37N30, 39A30.Received 22 October 2023; Accepted 16 November 2023.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信