The Effect of Latent Space Vector on Generating Animal Faces in Deep Convolutional GAN: An Analysis

İsa Ataş
{"title":"The Effect of Latent Space Vector on Generating Animal Faces in Deep Convolutional GAN: An Analysis","authors":"İsa Ataş","doi":"10.24012/dumf.1393797","DOIUrl":null,"url":null,"abstract":"Researchers are showing great interest in Generative Adversarial Networks (GANs), which use deep learning techniques to mimic the content of datasets and are particularly adept at data generation. Despite their impressive performance, there is uncertainty about how GANs precisely map latent space vectors to realistic images and how the chosen dimensionality of the latent space affects the quality of the generated images. In this paper, we explored the potential of generative models in generating animal face images. For this purpose, we used the Deep Convolutional Generative Adversarial Network (DCGAN) model as a reference. To analyze the impact of selected latent space vectors, we synthesized animal face images by training data representations in the DCGAN model with the well-known AFHQ dataset from the literature. We compared the quantitative evaluation of the produced images using Fréchet Inception Distance (FID) and Inception Score (IS). As a result, we demonstrated that generative models can produce images with latent sizes significantly smaller and larger than the standard size of 100.","PeriodicalId":158576,"journal":{"name":"DÜMF Mühendislik Dergisi","volume":" 22","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DÜMF Mühendislik Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24012/dumf.1393797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Researchers are showing great interest in Generative Adversarial Networks (GANs), which use deep learning techniques to mimic the content of datasets and are particularly adept at data generation. Despite their impressive performance, there is uncertainty about how GANs precisely map latent space vectors to realistic images and how the chosen dimensionality of the latent space affects the quality of the generated images. In this paper, we explored the potential of generative models in generating animal face images. For this purpose, we used the Deep Convolutional Generative Adversarial Network (DCGAN) model as a reference. To analyze the impact of selected latent space vectors, we synthesized animal face images by training data representations in the DCGAN model with the well-known AFHQ dataset from the literature. We compared the quantitative evaluation of the produced images using Fréchet Inception Distance (FID) and Inception Score (IS). As a result, we demonstrated that generative models can produce images with latent sizes significantly smaller and larger than the standard size of 100.
潜空间向量对深度卷积 GAN 生成动物面孔的影响:分析
研究人员对生成对抗网络(GANs)表现出极大的兴趣,这种网络使用深度学习技术来模仿数据集的内容,尤其擅长数据生成。尽管其性能令人印象深刻,但对于 GANs 如何将潜空间向量精确映射到现实图像,以及所选的潜空间维度如何影响生成图像的质量,仍存在不确定性。在本文中,我们探索了生成模型在生成动物脸部图像方面的潜力。为此,我们使用了深度卷积生成对抗网络(DCGAN)模型作为参考。为了分析所选潜在空间向量的影响,我们用文献中著名的 AFHQ 数据集训练了 DCGAN 模型中的数据表示,从而合成了动物人脸图像。我们使用弗雷谢特起始距离(FID)和起始分数(IS)对生成的图像进行了定量评估比较。结果表明,生成模型可以生成潜像尺寸明显小于或大于标准尺寸 100 的图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信