Monogenic free inverse semigroups and partial automorphisms of regular rooted trees

Q3 Mathematics
E. Kochubinska, A. Oliynyk
{"title":"Monogenic free inverse semigroups and partial automorphisms of regular rooted trees","authors":"E. Kochubinska, A. Oliynyk","doi":"10.30970/ms.61.1.3-9","DOIUrl":null,"url":null,"abstract":"For a one-to-one partial mapping on an infinite set, we present a criterion in terms of its cycle-chain decomposition that the inverse subsemigroup generated by this mapping is monogenic free inverse. \nWe also give a sufficient condition for a regular rooted tree partial automorphism to extend to a partial automorphism of another regular rooted tree so that the inverse semigroup gene\\-ra\\-ted by this extended partial automorphism is monogenic free inverse. The extension procedure we develop is then applied to $n$-ary adding machines.","PeriodicalId":37555,"journal":{"name":"Matematychni Studii","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematychni Studii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/ms.61.1.3-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

For a one-to-one partial mapping on an infinite set, we present a criterion in terms of its cycle-chain decomposition that the inverse subsemigroup generated by this mapping is monogenic free inverse. We also give a sufficient condition for a regular rooted tree partial automorphism to extend to a partial automorphism of another regular rooted tree so that the inverse semigroup gene\-ra\-ted by this extended partial automorphism is monogenic free inverse. The extension procedure we develop is then applied to $n$-ary adding machines.
规则有根树的单原自由逆半群和部分自动形态
对于无穷集上的一对一局部映射,我们根据其循环链分解提出了一个标准,即该映射产生的逆子半群是单源自由逆。我们还给出了一个充分条件,即有规则有根树的部分自动形可以扩展为另一个有规则有根树的部分自动形,从而由这个扩展的部分自动形生成的逆子半群是单源自由逆。我们开发的扩展程序随后被应用于 $n$ary 加法器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matematychni Studii
Matematychni Studii Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
38
期刊介绍: Journal is devoted to research in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信