Real univariate polynomials with given signs of coefficients and simple real roots

Q3 Mathematics
V. MatematychniStudii., No 61, V. P. Kostov
{"title":"Real univariate polynomials with given signs of coefficients and simple real roots","authors":"V. MatematychniStudii., No 61, V. P. Kostov","doi":"10.30970/ms.61.1.22-34","DOIUrl":null,"url":null,"abstract":"We continue the study of different aspects of Descartes' rule of signs and discuss the connectedness of the sets of real degree $d$ univariate monic polynomials (i.~e. with leading coefficient $1$) with given numbers $\\ell ^+$ and $\\ell ^-$ of positive and negative real roots and given signs of the coefficients; the real roots are supposed all simple and the coefficients all non-vanishing. That is, we consider the space $\\mathcal{P}^d:=\\{ P:=x^d+a_1x^{d-1}+\\dots +a_d\\}$, $a_j\\in \\mathbb{R}^*=\\mathbb{R}\\setminus \\{ 0\\}$, the corresponding sign patterns $\\sigma=(\\sigma_1,\\sigma_2,\\dots, \\sigma_d)$, where $\\sigma_j=$sign$(a_j)$, and the sets $\\mathcal{P}^d_{\\sigma ,(\\ell ^+,\\ell ^-)}\\subset \\mathcal{P}^d$ of polynomials with given triples $(\\sigma ,(\\ell ^+,\\ell ^-))$.We prove that for degree $d\\leq 5$, all such sets are connected or empty. Most of the connected sets are contractible, i.~e. able to be reduced to one of their points by continuous deformation. Empty are exactly the sets with $d=4$, $\\sigma =(-,-,-,+)$, $\\ell^+=0$, $\\ell ^-=2$, with $d=5$, $\\sigma =(-,-,-,-,+)$, $\\ell^+=0$, $\\ell ^-=3$, and the ones obtained from them under the $\\mathbb{Z}_2\\times \\mathbb{Z}_2$-actiondefined on the set of degree $d$ monic polynomials by its two generators which are two commuting  involutions: $i_m\\colon P(x)\\mapsto (-1)^dP(-x)$ and $i_r\\colon P(x)\\mapsto x^dP(1/x)/P(0)$. We show that for arbitrary $d$, two following sets are contractible:1) the set of degree $d$ real monic polynomials having all coefficients positive and with exactly $n$ complex  conjugate pairs of roots ($2n\\leq d$);2) for $1\\leq s\\leq d$, the set of real degree $d$ monic polynomials with exactly $n$ conjugate pairs ($2n\\leq d$) whose first $s$ coefficients are positive and the next $d+1-s$ ones are negative.For any degree $d\\geq 6$, we give an example of a set $\\mathcal{P}^d_{\\sigma ,(\\ell^+,\\ell^-)}$  having $\\Lambda (d)$ connected compo\\-nents, where $\\Lambda (d)\\rightarrow \\infty$ as $d\\rightarrow \\infty$.","PeriodicalId":37555,"journal":{"name":"Matematychni Studii","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematychni Studii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/ms.61.1.22-34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

We continue the study of different aspects of Descartes' rule of signs and discuss the connectedness of the sets of real degree $d$ univariate monic polynomials (i.~e. with leading coefficient $1$) with given numbers $\ell ^+$ and $\ell ^-$ of positive and negative real roots and given signs of the coefficients; the real roots are supposed all simple and the coefficients all non-vanishing. That is, we consider the space $\mathcal{P}^d:=\{ P:=x^d+a_1x^{d-1}+\dots +a_d\}$, $a_j\in \mathbb{R}^*=\mathbb{R}\setminus \{ 0\}$, the corresponding sign patterns $\sigma=(\sigma_1,\sigma_2,\dots, \sigma_d)$, where $\sigma_j=$sign$(a_j)$, and the sets $\mathcal{P}^d_{\sigma ,(\ell ^+,\ell ^-)}\subset \mathcal{P}^d$ of polynomials with given triples $(\sigma ,(\ell ^+,\ell ^-))$.We prove that for degree $d\leq 5$, all such sets are connected or empty. Most of the connected sets are contractible, i.~e. able to be reduced to one of their points by continuous deformation. Empty are exactly the sets with $d=4$, $\sigma =(-,-,-,+)$, $\ell^+=0$, $\ell ^-=2$, with $d=5$, $\sigma =(-,-,-,-,+)$, $\ell^+=0$, $\ell ^-=3$, and the ones obtained from them under the $\mathbb{Z}_2\times \mathbb{Z}_2$-actiondefined on the set of degree $d$ monic polynomials by its two generators which are two commuting  involutions: $i_m\colon P(x)\mapsto (-1)^dP(-x)$ and $i_r\colon P(x)\mapsto x^dP(1/x)/P(0)$. We show that for arbitrary $d$, two following sets are contractible:1) the set of degree $d$ real monic polynomials having all coefficients positive and with exactly $n$ complex  conjugate pairs of roots ($2n\leq d$);2) for $1\leq s\leq d$, the set of real degree $d$ monic polynomials with exactly $n$ conjugate pairs ($2n\leq d$) whose first $s$ coefficients are positive and the next $d+1-s$ ones are negative.For any degree $d\geq 6$, we give an example of a set $\mathcal{P}^d_{\sigma ,(\ell^+,\ell^-)}$  having $\Lambda (d)$ connected compo\-nents, where $\Lambda (d)\rightarrow \infty$ as $d\rightarrow \infty$.
具有给定系数符号和简单实数根的实数单变量多项式
我们继续研究笛卡尔符号规则的不同方面,讨论实数度 $d$ 单变量一元多项式(即前导系数为 $1$)的集合的连通性,这些集合具有给定数 $\ell ^+$ 和 $\ell ^-$ 的正实根和负实根,以及给定的系数符号;实根假定都是简单的,系数假定都是非范数。也就是说,我们考虑的空间是 $\mathcal{P}^d:=\{ P:=x^d+a_1x^{d-1}+\dots +a_d\}$, $a_j\in \mathbb{R}^*=\mathbb{R}\setminus \{ 0\}$, 相应的符号模式 $\sigma=(\sigma_1,\sigma_2,\dots,\sigma_d)$、其中 $\sigma_j=$sign$(a_j)$, 以及具有给定三元组 $(\sigma ,(\ell ^+,\ell ^-))$ 的多项式的集合 $\mathcal{P}^d_{sigma ,(\ell ^+,\ell ^-)} 子集 \mathcal{P}^d$.我们证明,对于度数 $d\leq 5$,所有这样的集合都是连通的或空的。大多数连通集合是可收缩的,即能够通过连续变形还原为其中一点。空集恰恰是具有 $d=4$,$\sigma =(-,-,-,+)$,$\ell^+=0$,$\ell ^-=2$,具有 $d=5$,$\sigma =(-,-,-,-,+)$,$\ell^+=0$,$\ell ^-=3$的集合、以及它们在$\mathbb{Z}_2\times \mathbb{Z}_2$-action下得到的结果,该action定义在阶数为$d$的一元多项式集合上,其两个生成器是两个交换渐开线:$i_m\colon P(x)\mapsto (-1)^dP(-x)$ 和 $i_r\colon P(x)\mapsto x^dP(1/x)/P(0)$.我们证明,对于任意的 $d$,以下两个集合是可收缩的:1)所有系数都为正且有恰好 $n$ 复共轭根对(2n\leq d$)的度为 $d$ 的实数一元多项式集合;2)对于 $1\leq s\leq d$,有恰好 $n$ 共轭根对(2n\leq d$)的度为 $d$ 的实数一元多项式集合,其前 $s$ 系数为正,后 $d+1-s$ 系数为负。对于任意的度 $d\geq 6$,我们举例说明一个集合 $\mathcal{P}^d_{\sigma ,(\ell^+,\ell^-)}$ 具有 $\Lambda (d)$ 连接成分,其中 $\Lambda (d)\rightarrow \infty$ 为 $d\rightarrow \infty$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matematychni Studii
Matematychni Studii Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
38
期刊介绍: Journal is devoted to research in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信