A multi-criteria approach for selecting an explanation from the set of counterfactuals produced by an ensemble of explainers

Ignacy Stkepka, Mateusz Lango, Jerzy Stefanowski
{"title":"A multi-criteria approach for selecting an explanation from the set of counterfactuals produced by an ensemble of explainers","authors":"Ignacy Stkepka, Mateusz Lango, Jerzy Stefanowski","doi":"10.61822/amcs-2024-0009","DOIUrl":null,"url":null,"abstract":"Counterfactuals are widely used to explain ML model predictions by providing alternative scenarios for obtaining the more desired predictions. They can be generated by a variety of methods that optimize different, sometimes conflicting, quality measures and produce quite different solutions. However, choosing the most appropriate explanation method and one of the generated counterfactuals is not an easy task. Instead of forcing the user to test many different explanation methods and analysing conflicting solutions, in this paper, we propose to use a multi-stage ensemble approach that will select single counterfactual based on the multiple-criteria analysis. It offers a compromise solution that scores well on several popular quality measures. This approach exploits the dominance relation and the ideal point decision aid method, which selects one counterfactual from the Pareto front. The conducted experiments demonstrated that the proposed approach generates fully actionable counterfactuals with attractive compromise values of the considered quality measures.","PeriodicalId":502322,"journal":{"name":"International Journal of Applied Mathematics and Computer Science","volume":" 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.61822/amcs-2024-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Counterfactuals are widely used to explain ML model predictions by providing alternative scenarios for obtaining the more desired predictions. They can be generated by a variety of methods that optimize different, sometimes conflicting, quality measures and produce quite different solutions. However, choosing the most appropriate explanation method and one of the generated counterfactuals is not an easy task. Instead of forcing the user to test many different explanation methods and analysing conflicting solutions, in this paper, we propose to use a multi-stage ensemble approach that will select single counterfactual based on the multiple-criteria analysis. It offers a compromise solution that scores well on several popular quality measures. This approach exploits the dominance relation and the ideal point decision aid method, which selects one counterfactual from the Pareto front. The conducted experiments demonstrated that the proposed approach generates fully actionable counterfactuals with attractive compromise values of the considered quality measures.
从解释者集合产生的反事实集合中选择解释的多标准方法
反事实被广泛用于解释 ML 模型的预测结果,为获得更理想的预测结果提供替代方案。反事实可以通过多种方法生成,这些方法可以优化不同的质量度量,有时甚至是相互冲突的质量度量,并产生截然不同的解决方案。然而,选择最合适的解释方法和生成的反事实之一并非易事。本文建议使用一种多阶段组合方法,在多重标准分析的基础上选择单一的反事实,而不是强迫用户测试多种不同的解释方法并分析相互冲突的解决方案。它提供了一种折中的解决方案,在几种流行的质量衡量标准上得分都很高。该方法利用支配关系和理想点辅助决策方法,从帕累托前沿选择一个反事实。所进行的实验表明,所提出的方法能生成完全可操作的反事实,并在所考虑的质量衡量标准方面具有有吸引力的折衷值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信