{"title":"FAULT DETECTION AND CATEGORIZATION USING AN ADVANCED MACHINE LEARNING TECHNIQUE FOR INDUSTRIAL ROTATIONAL MACHINERY","authors":"Divya Paikaray, Naveen Kumar Rajendran, Vaishali Singh, Pulkit Srivastava","doi":"10.24874/pes.si.24.02.008","DOIUrl":null,"url":null,"abstract":"The difficulty of fault identification as well as categorization in industrial rotating machinery is fixed by this study, which introduces a revolutionary Dandelion Optimized CatBoost (DO-CB) technique. The suggested framework makes use of the CB algorithm, which is enhanced by the DO method. The first step in the suggested DO-CB approach is gathering sensor data from rotating gear to record different operational settings. To ensure robustness, the recommended approach is developed on identified data and includes a variety of fault scenarios. Additionally, the Python tool used for identifying faults and classification is the basis for the implementation of the DO-CB approach. The experimental findings show how well the suggested method works to precisely identify and classify problems in industrial rotating gear. In comparison to benchmark defect detection techniques, the suggested DO-CB approach performs better, demonstrating its capacity to manage intricate patterns and fluctuations in the data.","PeriodicalId":33556,"journal":{"name":"Proceedings on Engineering Sciences","volume":" 44","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings on Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24874/pes.si.24.02.008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
The difficulty of fault identification as well as categorization in industrial rotating machinery is fixed by this study, which introduces a revolutionary Dandelion Optimized CatBoost (DO-CB) technique. The suggested framework makes use of the CB algorithm, which is enhanced by the DO method. The first step in the suggested DO-CB approach is gathering sensor data from rotating gear to record different operational settings. To ensure robustness, the recommended approach is developed on identified data and includes a variety of fault scenarios. Additionally, the Python tool used for identifying faults and classification is the basis for the implementation of the DO-CB approach. The experimental findings show how well the suggested method works to precisely identify and classify problems in industrial rotating gear. In comparison to benchmark defect detection techniques, the suggested DO-CB approach performs better, demonstrating its capacity to manage intricate patterns and fluctuations in the data.