Agus Suharyanto, Alwafi Pujiraharjo, M. T. Iqbal, Article Info
{"title":"Influence of vegetation index to the rainfall intensity in Pasuruan Area, East Java Province, Indonesia","authors":"Agus Suharyanto, Alwafi Pujiraharjo, M. T. Iqbal, Article Info","doi":"10.31018/jans.v16i1.5316","DOIUrl":null,"url":null,"abstract":"An increase in population increases the rate of urbanization. This results in changes in land cover from vegetation to artificial material. As a result, much of the land surface reflects the sun's energy. Consequently, this increases the surface temperature of the land. An increase in land surface temperature (LST) will increase the intensity of rainfall. Therefore, the present study aimed to investigate the relationship between the increase in LST and rainfall intensity. Changes in land cover can be detected by normalized difference vegetation index (NDVI) and normalized difference built-up index (NDBI) parameters. Landsat satellite imagery was used to detect NDVI, NDBI, and LST. Image processing was done for imageries scanned in 1995, 2015, 2017, and 2021. Two areas in the East Java Province of Indonesia, namely Malang City and Pasuruan Area, were selected. The daily rainfall intensity data were collected from related rainfall stations in the same year. The Mononobe method was applied to analyze hourly and minute rainfall intensity. IDF curves were drawn from the analyzed results. The relationship between both parameters was analyzed by comparing the LST and hourly rainfall intensity from the IDF curve. The studied results showed that the maximum temperature increase from 1995 to 2021 for the Malang City and Pasuruan Area was 2.60 C and 7.60 C, respectively. For rain, the maximum rainfall intensity increased by 58 mm for Malang City and 18 mm for the Pasuruan Area. LST and rainfall intensity change trends of the two areas had a positive coefficient of regression. The findings can be used to predict the rainfall intensity and floods based on the LST data.\n ","PeriodicalId":14996,"journal":{"name":"Journal of Applied and Natural Science","volume":" 46","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied and Natural Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31018/jans.v16i1.5316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 0
Abstract
An increase in population increases the rate of urbanization. This results in changes in land cover from vegetation to artificial material. As a result, much of the land surface reflects the sun's energy. Consequently, this increases the surface temperature of the land. An increase in land surface temperature (LST) will increase the intensity of rainfall. Therefore, the present study aimed to investigate the relationship between the increase in LST and rainfall intensity. Changes in land cover can be detected by normalized difference vegetation index (NDVI) and normalized difference built-up index (NDBI) parameters. Landsat satellite imagery was used to detect NDVI, NDBI, and LST. Image processing was done for imageries scanned in 1995, 2015, 2017, and 2021. Two areas in the East Java Province of Indonesia, namely Malang City and Pasuruan Area, were selected. The daily rainfall intensity data were collected from related rainfall stations in the same year. The Mononobe method was applied to analyze hourly and minute rainfall intensity. IDF curves were drawn from the analyzed results. The relationship between both parameters was analyzed by comparing the LST and hourly rainfall intensity from the IDF curve. The studied results showed that the maximum temperature increase from 1995 to 2021 for the Malang City and Pasuruan Area was 2.60 C and 7.60 C, respectively. For rain, the maximum rainfall intensity increased by 58 mm for Malang City and 18 mm for the Pasuruan Area. LST and rainfall intensity change trends of the two areas had a positive coefficient of regression. The findings can be used to predict the rainfall intensity and floods based on the LST data.