B. Abdellaoui, Federico Falcini, Tarik Baibai, Karim KARIM HILMI, O. Ettahiri, R. Santoleri, Rachida Houssa, H. Nhhala, H. Er-Raioui, Laila Oukhattar
{"title":"Spatial pattern of sea surface temperature and chlorophyll-a trends in relation to hydrodynamic processes in the Alborán Sea","authors":"B. Abdellaoui, Federico Falcini, Tarik Baibai, Karim KARIM HILMI, O. Ettahiri, R. Santoleri, Rachida Houssa, H. Nhhala, H. Er-Raioui, Laila Oukhattar","doi":"10.12681/mms.30268","DOIUrl":null,"url":null,"abstract":"Environmental conditions such as temperature, planktonic biomass, and ocean currents play an important role in the development and distribution of marine species. This work aims to estimate, in a high spatial resolution, the actual trends of sea surface temperature (SST) and chlorophyll-a concentration (Chl-a) and to assess the relationship with the local hydrodynamic conditions in the Alborán Sea. To investigate these objectives, time series of SST and Chl-a of satellite sensor data were analyzed during 20 years from January 2001 to December 2020, using the Seasonal-Trend-Loess (STL) decomposition method and the Mann-Kendall seasonality test. The results, obtained with a 95% of confidence, showed that the Alborán Sea basin is subject to sea surface warming evaluated at 0.027 ± 0.008 ° C per year, related to the warming of the Atlantic water mass, which contributes to a decrease of productivity evaluated at -0.0024 ± 0.0003 μg /l per year of Chl-a concentration. These trends are not homogeneous over the entire basin area but show a large regional variation between different parts of the Alborán Sea due to the hydrodynamic process of the Atlantic Jet - Western Alboran Gyre system (AJ-WAG), which is more active especially in summer/autumn seasons and contribute largely to these changes by mixing the waters of the Atlantic Ocean and the Mediterranean Sea.","PeriodicalId":506559,"journal":{"name":"Mediterranean Marine Science","volume":" 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mediterranean Marine Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12681/mms.30268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Environmental conditions such as temperature, planktonic biomass, and ocean currents play an important role in the development and distribution of marine species. This work aims to estimate, in a high spatial resolution, the actual trends of sea surface temperature (SST) and chlorophyll-a concentration (Chl-a) and to assess the relationship with the local hydrodynamic conditions in the Alborán Sea. To investigate these objectives, time series of SST and Chl-a of satellite sensor data were analyzed during 20 years from January 2001 to December 2020, using the Seasonal-Trend-Loess (STL) decomposition method and the Mann-Kendall seasonality test. The results, obtained with a 95% of confidence, showed that the Alborán Sea basin is subject to sea surface warming evaluated at 0.027 ± 0.008 ° C per year, related to the warming of the Atlantic water mass, which contributes to a decrease of productivity evaluated at -0.0024 ± 0.0003 μg /l per year of Chl-a concentration. These trends are not homogeneous over the entire basin area but show a large regional variation between different parts of the Alborán Sea due to the hydrodynamic process of the Atlantic Jet - Western Alboran Gyre system (AJ-WAG), which is more active especially in summer/autumn seasons and contribute largely to these changes by mixing the waters of the Atlantic Ocean and the Mediterranean Sea.