Effects of die geometry and insulation on the energy and electrical parameters analyses of spark plasma sintered TiC ceramics

Milad Sakkaki, Milad Foroutani, Peyman Zare
{"title":"Effects of die geometry and insulation on the energy and electrical parameters analyses of spark plasma sintered TiC ceramics","authors":"Milad Sakkaki, Milad Foroutani, Peyman Zare","doi":"10.53063/synsint.2024.41172","DOIUrl":null,"url":null,"abstract":"This work conducts a numerical simulation to investigate the temperature and electric current distribution during the spark plasma sintering (SPS) process using the finite element method (FEM) carried out in COMSOL Multiphysics software. The main goal is to optimize the SPS process for titanium carbide (TiC) ceramics, with a particular focus on the effects of insulation and die geometry (height and thickness). For the TiC material, the ideal sintering temperature is set at 2000 °C. The study analyzes eight case studies, involving a base case, an insulating case, and six cases with various thicknesses and heights, in order to evaluate the effectiveness of the suggested optimization. The results show that using insulation on the die surface reduces heat transfer from the die surface significantly, which leads to a 63% decrease in input power consumption when compared to the basic scenario. Based on a correlation study between energy and electricity, increasing die thickness raises the cross-sectional area of the electric current, which raises the amount of electric power required to attain the 2000 °C sintering temperature. The results indicate the temperature distribution in the sample is more sensitive to changes in die height than to changes in die thickness.","PeriodicalId":22113,"journal":{"name":"Synthesis and Sintering","volume":" 28","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthesis and Sintering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53063/synsint.2024.41172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work conducts a numerical simulation to investigate the temperature and electric current distribution during the spark plasma sintering (SPS) process using the finite element method (FEM) carried out in COMSOL Multiphysics software. The main goal is to optimize the SPS process for titanium carbide (TiC) ceramics, with a particular focus on the effects of insulation and die geometry (height and thickness). For the TiC material, the ideal sintering temperature is set at 2000 °C. The study analyzes eight case studies, involving a base case, an insulating case, and six cases with various thicknesses and heights, in order to evaluate the effectiveness of the suggested optimization. The results show that using insulation on the die surface reduces heat transfer from the die surface significantly, which leads to a 63% decrease in input power consumption when compared to the basic scenario. Based on a correlation study between energy and electricity, increasing die thickness raises the cross-sectional area of the electric current, which raises the amount of electric power required to attain the 2000 °C sintering temperature. The results indicate the temperature distribution in the sample is more sensitive to changes in die height than to changes in die thickness.
模具几何形状和绝缘对火花等离子烧结 TiC 陶瓷的能量和电气参数分析的影响
本研究使用 COMSOL Multiphysics 软件中的有限元法 (FEM) 进行数值模拟,研究火花等离子烧结 (SPS) 过程中的温度和电流分布。主要目标是优化碳化钛(TiC)陶瓷的 SPS 工艺,尤其关注绝缘和模具几何形状(高度和厚度)的影响。对于 TiC 材料,理想的烧结温度设定为 2000 ℃。研究分析了八个案例,包括一个基本案例、一个绝缘案例和六个具有不同厚度和高度的案例,以评估建议优化的有效性。结果表明,在芯片表面使用隔热材料可显著减少芯片表面的热传递,与基本方案相比,输入功耗降低了 63%。根据能量和电力之间的相关性研究,增加模具厚度会增加电流的横截面积,从而增加达到 2000 °C 烧结温度所需的电力。结果表明,样品中的温度分布对模具高度的变化比模具厚度的变化更为敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信