Microstructural and dielectric characteristics of the Ce-doped Bi\(_{2}\)FeMnO\(_{6}\)

Laxmidhar Sahoo, S. A. Behera, Rajesh Kumar Singh, Santosh Parida, P. Achary
{"title":"Microstructural and dielectric characteristics of the Ce-doped Bi\\(_{2}\\)FeMnO\\(_{6}\\)","authors":"Laxmidhar Sahoo, S. A. Behera, Rajesh Kumar Singh, Santosh Parida, P. Achary","doi":"10.55713/jmmm.v34i1.1926","DOIUrl":null,"url":null,"abstract":"A double-perovskite material Bi2FeMn0.94Ce0.06O6 (BFMCO) was synthesized by solid state reaction technique and characterized it by various techniques (structural, microstructural, dielectric, impedance and modulus properties). The material has an orthorhombic crystal structure with an average crystallite size of 52.4 nm, as revealed by X-ray diffraction data (XRD). The scanning electron microscope (SEM) image shows the presence of nano rod-shaped grains and well-defined grain boundaries in this material, with an average grain size of 21.8 µm. The Energy dispersive X-ray (EDX) analysis and color mapping confirm the purity and the composition of the material. The dielectric, impedance and modulus properties are investigated in the temperature range of 25℃ to 500℃ and frequency range of 1 kHz to 1 MHz. The material exhibits a high dielectric constant at low frequency region and a low dielectric loss, which make it a suitable candidate for better energy storage devices. The impedance study reveals the negative temperature coefficient of resistance (NTCR) behavior of the material. The modulus study indicates the non-Debye relaxation of the material. The semi-conducting nature of the material is verified by the semi-circular arcs observed in both Nyquist and Cole-Cole plots. Thermally activated conduction mechanism is confirmed from ac conductivity study.\n ","PeriodicalId":502897,"journal":{"name":"Journal of Metals, Materials and Minerals","volume":" 25","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Metals, Materials and Minerals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55713/jmmm.v34i1.1926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A double-perovskite material Bi2FeMn0.94Ce0.06O6 (BFMCO) was synthesized by solid state reaction technique and characterized it by various techniques (structural, microstructural, dielectric, impedance and modulus properties). The material has an orthorhombic crystal structure with an average crystallite size of 52.4 nm, as revealed by X-ray diffraction data (XRD). The scanning electron microscope (SEM) image shows the presence of nano rod-shaped grains and well-defined grain boundaries in this material, with an average grain size of 21.8 µm. The Energy dispersive X-ray (EDX) analysis and color mapping confirm the purity and the composition of the material. The dielectric, impedance and modulus properties are investigated in the temperature range of 25℃ to 500℃ and frequency range of 1 kHz to 1 MHz. The material exhibits a high dielectric constant at low frequency region and a low dielectric loss, which make it a suitable candidate for better energy storage devices. The impedance study reveals the negative temperature coefficient of resistance (NTCR) behavior of the material. The modulus study indicates the non-Debye relaxation of the material. The semi-conducting nature of the material is verified by the semi-circular arcs observed in both Nyquist and Cole-Cole plots. Thermally activated conduction mechanism is confirmed from ac conductivity study.  
掺杂 Ce 的 Bi\(_{2}\)FeMnO\(_{6}\) 的微结构和介电特性
通过固态反应技术合成了一种双超晶态材料 Bi2FeMn0.94Ce0.06O6(BFMCO),并利用各种技术(结构、微结构、介电、阻抗和模量特性)对其进行了表征。X 射线衍射数据(XRD)显示,该材料具有正方晶体结构,平均晶粒大小为 52.4 nm。扫描电子显微镜(SEM)图像显示,这种材料中存在纳米棒状晶粒和清晰的晶界,平均晶粒大小为 21.8 微米。能量色散 X 射线(EDX)分析和色谱分析证实了材料的纯度和成分。在 25℃ 至 500℃ 的温度范围和 1 kHz 至 1 MHz 的频率范围内对介电、阻抗和模量特性进行了研究。该材料在低频区域表现出较高的介电常数和较低的介电损耗,这使其成为更好的储能设备的合适候选材料。阻抗研究显示了该材料的负温度系数电阻(NTCR)特性。模量研究表明该材料具有非脱贝弛豫特性。在奈奎斯特图和科尔-科尔图中观察到的半圆弧验证了该材料的半导电性质。交流导电性研究证实了热激活传导机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信