Using machine learning and 10‐K filings to measure innovation

Essi Nousiainen, Mikko Ranta, M. Ylinen, Marko Järvenpää
{"title":"Using machine learning and 10‐K filings to measure innovation","authors":"Essi Nousiainen, Mikko Ranta, M. Ylinen, Marko Järvenpää","doi":"10.1111/acfi.13245","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to develop and validate a text‐based measure of innovation using latent Dirichlet allocation on a sample of 45,409 10‐K filings from US listed companies. We expect that the text‐based innovation measure is associated with innovation and can be used to measure innovation for companies without patents or significant research and development expenditures. The empirical results are consistent with these assumptions, but reveal that thorough initial testing is required to ensure robustness. This study extends the research on innovation measurement and company disclosures, and provides a new method for assessing innovation using company disclosures.","PeriodicalId":335953,"journal":{"name":"Accounting & Finance","volume":" 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounting & Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/acfi.13245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this paper is to develop and validate a text‐based measure of innovation using latent Dirichlet allocation on a sample of 45,409 10‐K filings from US listed companies. We expect that the text‐based innovation measure is associated with innovation and can be used to measure innovation for companies without patents or significant research and development expenditures. The empirical results are consistent with these assumptions, but reveal that thorough initial testing is required to ensure robustness. This study extends the research on innovation measurement and company disclosures, and provides a new method for assessing innovation using company disclosures.
利用机器学习和 10-K 申报衡量创新
本文的目的是在美国上市公司 45,409 份 10-K 文件样本中,利用潜在 Dirichlet 分配法开发并验证一种基于文本的创新度量方法。我们希望基于文本的创新度量与创新相关联,并可用于度量没有专利或大量研发支出的公司的创新情况。实证结果与这些假设相符,但表明需要进行全面的初步测试以确保稳健性。本研究扩展了有关创新衡量和公司信息披露的研究,并提供了一种利用公司信息披露评估创新的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信