Weighted Compressive Sensing Applied to Seismic Interferometry: Wavefield Reconstruction Using Prior Information

P. Saengduean, Roel Snieder, M. Wakin
{"title":"Weighted Compressive Sensing Applied to Seismic Interferometry: Wavefield Reconstruction Using Prior Information","authors":"P. Saengduean, Roel Snieder, M. Wakin","doi":"10.1785/0220230066","DOIUrl":null,"url":null,"abstract":"\n Seismic interferometry is widely used for passive subsurface investigation using seismic noise. The technique requires much storage for long noise records to suppress interferometric noise, which consists of spurious arrivals that do not correspond to the inter-receiver surface waves. Such long recordings may not be available in practice. Compressive sensing (CS), which is a wavefield reconstruction technique operating on incomplete data, may increase the availability, and reduce storage limitations of long noise time series. Using a numerical example of a linear array surrounded by sources and the Fourier basis for a sparse transform, we show that inter-receiver wavefields can be recovered at the locations where seismometers are unavailable, reducing the storage required for interferometry. We propose and develop a weighted CS algorithm that helps suppress the spurious arrivals by incorporating a priori information about the arrivals of surface waves that can be expected.","PeriodicalId":508466,"journal":{"name":"Seismological Research Letters","volume":" 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seismological Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1785/0220230066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Seismic interferometry is widely used for passive subsurface investigation using seismic noise. The technique requires much storage for long noise records to suppress interferometric noise, which consists of spurious arrivals that do not correspond to the inter-receiver surface waves. Such long recordings may not be available in practice. Compressive sensing (CS), which is a wavefield reconstruction technique operating on incomplete data, may increase the availability, and reduce storage limitations of long noise time series. Using a numerical example of a linear array surrounded by sources and the Fourier basis for a sparse transform, we show that inter-receiver wavefields can be recovered at the locations where seismometers are unavailable, reducing the storage required for interferometry. We propose and develop a weighted CS algorithm that helps suppress the spurious arrivals by incorporating a priori information about the arrivals of surface waves that can be expected.
加权压缩传感应用于地震干涉测量:利用先验信息重建波场
地震干涉测量法被广泛用于利用地震噪声进行被动地下勘测。该技术需要大量存储长噪声记录,以抑制干涉噪声,干涉噪声由与接收器间表面波不一致的杂散到达组成。在实践中可能无法获得这样长的记录。压缩传感(CS)是一种在不完整数据上运行的波场重建技术,可提高长噪声时间序列的可用性并减少存储限制。我们以一个被震源包围的线性阵列和稀疏变换的傅立叶基础为例,说明在没有地震仪的地方也能恢复接收器间的波场,从而减少干涉测量所需的存储空间。我们提出并开发了一种加权 CS 算法,该算法通过纳入可预期的面波到达的先验信息来帮助抑制杂散到达。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信