{"title":"On Subcritical Markov Branching Processes with a Specified Limiting Conditional Law","authors":"Assen Tchorbadjieff, Penka Mayster, A. Pakes","doi":"10.1515/eqc-2023-0043","DOIUrl":null,"url":null,"abstract":"\n <jats:p>The probability generating function (pgf) <jats:inline-formula id=\"j_eqc-2023-0043_ineq_9999\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mi>B</m:mi>\n <m:mo></m:mo>\n <m:mrow>\n <m:mo stretchy=\"false\">(</m:mo>\n <m:mi>s</m:mi>\n <m:mo stretchy=\"false\">)</m:mo>\n </m:mrow>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_eqc-2023-0043_eq_0176.png\" />\n <jats:tex-math>{B(s)}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> of the limiting conditional law (LCL) of a subcritical Markov branching process <jats:inline-formula id=\"j_eqc-2023-0043_ineq_9998\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mo stretchy=\"false\">(</m:mo>\n <m:mrow>\n <m:msub>\n <m:mi>Z</m:mi>\n <m:mi>t</m:mi>\n </m:msub>\n <m:mo>:</m:mo>\n <m:mrow>\n <m:mi>t</m:mi>\n <m:mo>≥</m:mo>\n <m:mn>0</m:mn>\n </m:mrow>\n </m:mrow>\n <m:mo stretchy=\"false\">)</m:mo>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_eqc-2023-0043_eq_0131.png\" />\n <jats:tex-math>{(Z_{t}:t\\geq 0)}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> (MBP) has a certain integral representation and it satisfies <jats:inline-formula id=\"j_eqc-2023-0043_ineq_9997\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mrow>\n <m:mi>B</m:mi>\n <m:mo></m:mo>\n <m:mrow>\n <m:mo stretchy=\"false\">(</m:mo>\n <m:mn>0</m:mn>\n <m:mo stretchy=\"false\">)</m:mo>\n </m:mrow>\n </m:mrow>\n <m:mo>=</m:mo>\n <m:mn>0</m:mn>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_eqc-2023-0043_eq_0166.png\" />\n <jats:tex-math>{B(0)=0}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> and <jats:inline-formula id=\"j_eqc-2023-0043_ineq_9996\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mrow>\n <m:msup>\n <m:mi>B</m:mi>\n <m:mo>′</m:mo>\n </m:msup>\n <m:mo></m:mo>\n <m:mrow>\n <m:mo stretchy=\"false\">(</m:mo>\n <m:mn>0</m:mn>\n <m:mo stretchy=\"false\">)</m:mo>\n </m:mrow>\n </m:mrow>\n <m:mo>></m:mo>\n <m:mn>0</m:mn>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_eqc-2023-0043_eq_0180.png\" />\n <jats:tex-math>{B^{\\prime}(0)>0}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>. The general problem posed here is the inverse one: If a given pgf <jats:italic>B</jats:italic> satisfies these two conditions, is it related in this way to some MBP? We obtain some necessary conditions for this to be possible and illustrate the issues with simple examples and counterexamples. The particular case of the Borel law is shown to be the LCL of a family of MBPs and that the probabilities <jats:inline-formula id=\"j_eqc-2023-0043_ineq_9995\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:msub>\n <m:mi>P</m:mi>\n <m:mn>1</m:mn>\n </m:msub>\n <m:mrow>\n <m:mo stretchy=\"false\">(</m:mo>\n <m:msub>\n <m:mi>Z</m:mi>\n <m:mi>t</m:mi>\n </m:msub>\n <m:mo>=</m:mo>\n <m:mi>j</m:mi>\n <m:mo stretchy=\"false\">)</m:mo>\n </m:mrow>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_eqc-2023-0043_eq_0218.png\" />\n <jats:tex-math>{P_{1}(Z_{t}=j)}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> have simple explicit algebraic expressions. Exact conditions are found under which a shifted negative-binomial law can be a LCL. Finally, implications are explored for the offspring law arising from infinite divisibility of the correponding LCL.</jats:p>","PeriodicalId":37499,"journal":{"name":"Stochastics and Quality Control","volume":"123 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics and Quality Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/eqc-2023-0043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
The probability generating function (pgf) B(s){B(s)} of the limiting conditional law (LCL) of a subcritical Markov branching process (Zt:t≥0){(Z_{t}:t\geq 0)} (MBP) has a certain integral representation and it satisfies B(0)=0{B(0)=0} and B′(0)>0{B^{\prime}(0)>0}. The general problem posed here is the inverse one: If a given pgf B satisfies these two conditions, is it related in this way to some MBP? We obtain some necessary conditions for this to be possible and illustrate the issues with simple examples and counterexamples. The particular case of the Borel law is shown to be the LCL of a family of MBPs and that the probabilities P1(Zt=j){P_{1}(Z_{t}=j)} have simple explicit algebraic expressions. Exact conditions are found under which a shifted negative-binomial law can be a LCL. Finally, implications are explored for the offspring law arising from infinite divisibility of the correponding LCL.