EEG band power and phase-amplitude coupling in patients with Dravet syndrome

Joanne C. Hall, Shahid Bashir, Melissa Tsuboyama, Raidah Al-Bradie, Ali Mir, Mona Ali, Annapurna Poduri, Alexander Rotenberg
{"title":"EEG band power and phase-amplitude coupling in patients with Dravet syndrome","authors":"Joanne C. Hall,&nbsp;Shahid Bashir,&nbsp;Melissa Tsuboyama,&nbsp;Raidah Al-Bradie,&nbsp;Ali Mir,&nbsp;Mona Ali,&nbsp;Annapurna Poduri,&nbsp;Alexander Rotenberg","doi":"10.1002/cns3.20061","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Objective</h3>\n \n <p>Dravet syndrome (DS) is an epileptic encephalopathy caused by haploinsufficiency of the <i>SCN1A</i> gene. <i>SCN1A</i> gene deficiency limits the firing rates of fast-spiking inhibitory interneurons, which should reflect in abnormal aggregate network oscillatory electroencephalography (EEG) activity that can be measured by spectral power and phase-amplitude coupling (PAC) analysis. In this retrospective pilot study, we tested whether spectral EEG frequency band power and PAC metrics distinguish children with DS from age-matched controls, an early step toward establishing EEG markers of target engagement by gene or drug therapy.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>EEG data were collected from patients with DS (<i>N</i> = 6) and age-matched control pediatric participants (<i>N</i> = 11) and analyzed for cumulative spectral power and PAC and classification capacity of these metrics, by logistic regression analysis. For this initial spectral and PAC analysis, we focused on sleep EEG, where myogenic artifact is minimal and where <i>δ</i>–<i>γ</i> and <i>θ</i>–<i>γ</i> coupling is otherwise expected to be robust.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Cumulative <i>δ</i> (1– &lt;4 Hz) and <i>θ</i> (4–7 Hz) power was significantly reduced in the DS group, compared with age-matched controls (<i>p</i> = 0.001 and <i>p</i> = 0.02, respectively). The <i>δ</i> power was a stronger classifier of separating DS from controls than <i>θ</i> power, with 87% and 83% accuracy, respectively. The <i>γ</i> power trended toward significant reduction (<i>p</i> = 0.08) in the DS group. We found significantly lower PAC between 1–2 Hz phase and 63–80 Hz amplitude in patients with DS compared with the age-matched controls (<i>p</i> = 0.003), with 78% classification accuracy between groups for PAC.</p>\n </section>\n \n <section>\n \n <h3> Interpretation</h3>\n \n <p>In this pilot study assessing EEG patterns during sleep, we found lower <i>δ</i>–<i>θ</i> power and PAC in patients with DS versus controls, which may reflect abnormal aggregate macroscale network communication patterns resulting from <i>SCN1A</i> deficiency. These measures may be useful metrics of therapeutic target engagement, particularly if the therapy restores the underlying DS pathophysiology. The sorting capacity of these metrics distinguished patients with DS from patients without DS and may in turn facilitate near-future development of disease and therapy target engagement biomarkers in this syndrome.</p>\n </section>\n </div>","PeriodicalId":72232,"journal":{"name":"Annals of the Child Neurology Society","volume":"2 2","pages":"92-105"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cns3.20061","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the Child Neurology Society","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cns3.20061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective

Dravet syndrome (DS) is an epileptic encephalopathy caused by haploinsufficiency of the SCN1A gene. SCN1A gene deficiency limits the firing rates of fast-spiking inhibitory interneurons, which should reflect in abnormal aggregate network oscillatory electroencephalography (EEG) activity that can be measured by spectral power and phase-amplitude coupling (PAC) analysis. In this retrospective pilot study, we tested whether spectral EEG frequency band power and PAC metrics distinguish children with DS from age-matched controls, an early step toward establishing EEG markers of target engagement by gene or drug therapy.

Methods

EEG data were collected from patients with DS (N = 6) and age-matched control pediatric participants (N = 11) and analyzed for cumulative spectral power and PAC and classification capacity of these metrics, by logistic regression analysis. For this initial spectral and PAC analysis, we focused on sleep EEG, where myogenic artifact is minimal and where δγ and θγ coupling is otherwise expected to be robust.

Results

Cumulative δ (1– <4 Hz) and θ (4–7 Hz) power was significantly reduced in the DS group, compared with age-matched controls (p = 0.001 and p = 0.02, respectively). The δ power was a stronger classifier of separating DS from controls than θ power, with 87% and 83% accuracy, respectively. The γ power trended toward significant reduction (p = 0.08) in the DS group. We found significantly lower PAC between 1–2 Hz phase and 63–80 Hz amplitude in patients with DS compared with the age-matched controls (p = 0.003), with 78% classification accuracy between groups for PAC.

Interpretation

In this pilot study assessing EEG patterns during sleep, we found lower δθ power and PAC in patients with DS versus controls, which may reflect abnormal aggregate macroscale network communication patterns resulting from SCN1A deficiency. These measures may be useful metrics of therapeutic target engagement, particularly if the therapy restores the underlying DS pathophysiology. The sorting capacity of these metrics distinguished patients with DS from patients without DS and may in turn facilitate near-future development of disease and therapy target engagement biomarkers in this syndrome.

Abstract Image

德雷维综合征患者的脑电图波段功率和相位-振幅耦合
德雷维综合征(Dravet Syndrome,DS)是一种由 SCN1A 基因单倍体缺乏引起的癫痫性脑病。SCN1A 基因缺陷限制了快速尖峰抑制性中间神经元的发射率,这应反映在异常的集合网络振荡脑电图(EEG)活动中,可通过频谱功率和相位-振幅耦合(PAC)分析进行测量。在这项回顾性试验研究中,我们测试了频谱脑电图频带功率和相位振幅耦合指标是否能将DS患儿与年龄匹配的对照组区分开来,这是建立基因或药物疗法靶点参与的脑电图标记的第一步。我们收集了DS患者(6人)和年龄匹配的对照组儿科参与者(11人)的脑电图数据,并通过逻辑回归分析法分析了累积频谱功率和相位振幅耦合指标以及这些指标的分类能力。与年龄匹配的对照组相比,DS 组的累积δ(1- <4 Hz)和θ(4- 7 Hz)功率显著降低(分别为 p = 0.001 和 p = 0.02)。与 θ 功率相比,δ 功率是区分 DS 和对照组的更强分类器,准确率分别为 87% 和 83%。在 DS 组中,γ 功率呈显著下降趋势(p = 0.08)。我们发现,与年龄匹配的对照组相比,DS 患者在 1-2 Hz 相位和 63-80 Hz 振幅之间的 PAC 明显较低(p = 0.003),组间 PAC 分类准确率为 78%。在这项评估睡眠期间脑电图模式的试验性研究中,我们发现 DS 患者的 δ-θ 功率和 PAC 较对照组低,这可能反映了 SCN1A 缺乏导致的宏观网络通讯模式异常。这些指标可能是治疗目标参与度的有用指标,尤其是在治疗能恢复 DS 潜在病理生理学的情况下。这些指标的分类能力将DS患者与非DS患者区分开来,可能反过来促进该综合征的疾病和治疗目标参与生物标记物的近期开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信