Recognition of geomagnetic storms from time series of matrix observations with the muon hodoscope URAGAN using neural networks of deep learning

Viktor Getmanov, Alexei Gvishiani, Anatoly Soloviev, Konstantin Zajtsev, Maksim Dunaev, Eduard Ehlakov
{"title":"Recognition of geomagnetic storms from time series of matrix observations with the muon hodoscope URAGAN using neural networks of deep learning","authors":"Viktor Getmanov, Alexei Gvishiani, Anatoly Soloviev, Konstantin Zajtsev, Maksim Dunaev, Eduard Ehlakov","doi":"10.12737/szf-101202411","DOIUrl":null,"url":null,"abstract":"We solve the problem of recognizing geomagnetic storms from matrix time series of observations with the URAGAN muon hodoscope, using deep learning neural networks. A variant of the neural network software module is selected and its parameters are determined. Geomagnetic storms are recognized using binary classification procedures; a decision-making rule is formed. We estimate probabilities of correct and false recognitions. The recognition of geomagnetic storms is experimentally studied; for the assigned Dst threshold Yᴅ₀=–45 nT we obtain acceptable probabilities of correct and false recognitions, which amount to β=0.8212 and α=0.0047. We confirm the effectiveness and prospects of the proposed neural network approach.","PeriodicalId":351867,"journal":{"name":"Solnechno-Zemnaya Fizika","volume":"89 13","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solnechno-Zemnaya Fizika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12737/szf-101202411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We solve the problem of recognizing geomagnetic storms from matrix time series of observations with the URAGAN muon hodoscope, using deep learning neural networks. A variant of the neural network software module is selected and its parameters are determined. Geomagnetic storms are recognized using binary classification procedures; a decision-making rule is formed. We estimate probabilities of correct and false recognitions. The recognition of geomagnetic storms is experimentally studied; for the assigned Dst threshold Yᴅ₀=–45 nT we obtain acceptable probabilities of correct and false recognitions, which amount to β=0.8212 and α=0.0047. We confirm the effectiveness and prospects of the proposed neural network approach.
利用深度学习神经网络从μ介子示波器 URAGAN 的矩阵观测时间序列中识别地磁暴
我们利用深度学习神经网络解决了从URAGANμ介子示波器的观测矩阵时间序列中识别地磁暴的问题。我们选择了神经网络软件模块的一个变体,并确定了其参数。使用二元分类程序识别地磁暴;形成决策规则。我们估算了正确识别和错误识别的概率。对地磁暴的识别进行了实验研究;对于指定的 Dst 门限 Yᴅ₀=-45 nT,我们获得了可接受的正确和错误识别概率,分别为 β=0.8212 和 α=0.0047。我们证实了所建议的神经网络方法的有效性和前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信