Ying Xiong, B. Fang, Jinhua Zhang, Ke Yan, Delin Liao, Jun Hong
{"title":"Non-circular interference fit analysis in harmonic reducer based on sequential assembling and loading simulation","authors":"Ying Xiong, B. Fang, Jinhua Zhang, Ke Yan, Delin Liao, Jun Hong","doi":"10.1177/09544054241236999","DOIUrl":null,"url":null,"abstract":"The flexible bearing is usually connected to the cam with an interference fit in harmonic reducers. Studies show that interference fit can cause changes in the structural parameters of the bearing and lead to changes in the service performance of the bearing and its supporting system. This paper proposes a general simulation method to investigate the influence of interference fit in harmonic reducers with the concept of the equivalent interference for non-circular fit between the flexible bearing and cam. Then, the four steps based on the sequential assembling and loading process are designed to ensure assembly concentricity and simulation convergence. The analysis results indicate that appropriately increasing the equivalent interference can improve the service life of the flexspline without degrading the meshing performance and, at the same time, increase the number of loaded balls to make the operation of the harmonic reducer more stable. Moreover, an optimal equivalent interference can be designed to ensure the harmonic reducer operates at its best, where the number of loaded balls and the maximum Mises stress of the inner ring appear inflection point, and the number of meshing tooth pairs reaches the maximum.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544054241236999","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
The flexible bearing is usually connected to the cam with an interference fit in harmonic reducers. Studies show that interference fit can cause changes in the structural parameters of the bearing and lead to changes in the service performance of the bearing and its supporting system. This paper proposes a general simulation method to investigate the influence of interference fit in harmonic reducers with the concept of the equivalent interference for non-circular fit between the flexible bearing and cam. Then, the four steps based on the sequential assembling and loading process are designed to ensure assembly concentricity and simulation convergence. The analysis results indicate that appropriately increasing the equivalent interference can improve the service life of the flexspline without degrading the meshing performance and, at the same time, increase the number of loaded balls to make the operation of the harmonic reducer more stable. Moreover, an optimal equivalent interference can be designed to ensure the harmonic reducer operates at its best, where the number of loaded balls and the maximum Mises stress of the inner ring appear inflection point, and the number of meshing tooth pairs reaches the maximum.
期刊介绍:
Manufacturing industries throughout the world are changing very rapidly. New concepts and methods are being developed and exploited to enable efficient and effective manufacturing. Existing manufacturing processes are being improved to meet the requirements of lean and agile manufacturing. The aim of the Journal of Engineering Manufacture is to provide a focus for these developments in engineering manufacture by publishing original papers and review papers covering technological and scientific research, developments and management implementation in manufacturing. This journal is also peer reviewed.
Contributions are welcomed in the broad areas of manufacturing processes, manufacturing technology and factory automation, digital manufacturing, design and manufacturing systems including management relevant to engineering manufacture. Of particular interest at the present time would be papers concerned with digital manufacturing, metrology enabled manufacturing, smart factory, additive manufacturing and composites as well as specialist manufacturing fields like nanotechnology, sustainable & clean manufacturing and bio-manufacturing.
Articles may be Research Papers, Reviews, Technical Notes, or Short Communications.